
VB.NET

 VB.NET

 1

About the Tutorial

VB.Net is a simple, modern, object-oriented computer programming language

developed by Microsoft to combine the power of .NET Framework and the common

language runtime with the productivity benefits that are the hallmark of Visual

Basic.

This tutorial will teach you basic VB.Net programming and will also take you

through various advanced concepts related to VB.Net programming language.

Audience

This tutorial has been prepared for the beginners to help them understand basic

VB.Net programming. After completing this tutorial, you will find yourself at a

moderate level of expertise in VB.Net programming from where you can take

yourself to next levels.

Prerequisites

VB.Net programming is very much based on BASIC and Visual Basic programming

languages, so if you have basic understanding on these programming languages,

then it will be a fun for you to learn VB.Net programming language.

Copyright & Disclaimer

© Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials

Point (I) Pvt. Ltd. The user of this e-book can retain a copy for future reference

but commercial use of this data is not allowed. Distribution or republishing any

content or a part of the content of this e-book in any manner is also not allowed

without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as

precisely as possible, however, the contents may contain inaccuracies or errors.

Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,

timeliness or completeness of our website or its contents including this tutorial. If

you discover any errors on our website or in this tutorial, please notify us at

contact@tutorialspoint.com

 VB.NET

 2

Table of Contents

About the Tutorial ... 1

Audience ... 1

Prerequisites ... 1

Copyright & Disclaimer .. 1

Table of Contents .. 2

1. OVERVIEW ... 8

Strong Programming Features VB.Net ... 8

2. ENVIRONMENT SETUP ... 10

The .Net Framework ... 10

Integrated Development Environment (IDE) For VB.Net ... 11

Writing VB.Net Programs on Linux or Mac OS ... 11

3. PROGRAM STRUCTURE .. 12

VB.Net Hello World Example ... 12

Compile & Execute VB.Net Program .. 13

4. BASIC SYNTAX .. 15

A Rectangle Class in VB.Net ... 15

Identifiers .. 17

VB.Net Keywords .. 17

5. DATA TYPES ... 19

Data Types Available in VB.Net ... 19

Example .. 21

The Type Conversion Functions in VB.Net ... 22

Example .. 24

 VB.NET

 3

6. VARIABLES ... 25

Variable Declaration in VB.Net .. 25

Variable Initialization in VB.Net .. 27

Example .. 27

Accepting Values from User .. 28

Lvalues and Rvalues .. 28

7. CONSTANTS AND ENUMERATIONS .. 30

Declaring Constants .. 30

Example .. 31

Print and Display Constants in VB.Net ... 31

Declaring Enumerations .. 32

Example .. 33

8. MODIFIERS .. 35

List of Available Modifiers in VB.Net ... 35

9. STATEMENTS ... 40

Declaration Statements ... 40

Executable Statements .. 44

10. DIRECTIVES .. 45

Compiler Directives in VB.Net ... 45

11. OPERATORS ... 50

Arithmetic Operators .. 50

Example .. 51

Comparison Operators .. 52

Logical/Bitwise Operators ... 54

Example .. 55

Bit Shift Operators .. 57

 VB.NET

 4

Example .. 59

Assignment Operators... 60

Example .. 61

Miscellaneous Operators .. 62

Example .. 63

Operators Precedence in VB.Net ... 64

Example .. 65

12. DECISION MAKING... 67

If...Then Statement ... 68

If...Then...Else Statement .. 70

The If...Else If...Else Statement .. 71

Nested If Statements ... 73

Select Case Statement ... 74

Nested Select Case Statement ... 76

13. LOOPS ... 78

Do Loop ... 79

For...Next Loop.. 82

Each...Next Loop ... 84

While... End While Loop .. 85

With... End With Statement .. 88

Nested Loops .. 89

Loop Control Statements... 91

Exit Statement .. 92

Continue Statement .. 94

GoTo Statement .. 95

 VB.NET

 5

14. STRINGS... 98

Creating a String Objec .. 98

Properties of the String Class .. 99

Methods of the String Class ... 99

Examples ... 105

15. DATE & TIME ... 108

Properties and Methods of the DateTime Structure .. 109

Creating a DateTime Object .. 112

Getting the Current Date and Time ... 113

Formatting Date .. 114

Predefined Date/Time Formats ... 115

Properties and Methods of the DateAndTime Class .. 117

16. ARRAYS .. 121

Creating Arrays in VB.Net .. 121

Dynamic Arrays ... 122

Multi-Dimensional Arrays ... 124

Jagged Array.. 125

The Array Class .. 126

17. COLLECTIONS .. 131

Various Collection Classes and Their Usage ... 131

ArrayList .. 132

Hashtable .. 136

SortedList .. 138

Stack ... 142

Queue ... 144

BitArray ... 146

 VB.NET

 6

18. FUNCTIONS ... 151

Defining a Function ... 151

Example .. 151

Function Returning a Value ... 152

Recursive Function .. 153

Param Arrays .. 154

Passing Arrays as Function Arguments .. 154

19. SUB PROCEDURES ... 156

Defining Sub Procedures ... 156

Example .. 156

Passing Parameters by Value .. 157

Passing Parameters by Reference.. 158

20. CLASSES & OBJECTS ... 160

Class Definition ... 160

Member Functions and Encapsulation .. 162

Constructors and Destructors .. 163

Shared Members of a VB.Net Class ... 166

Inheritance .. 167

Base & Derived Classes.. 167

Base Class Initialization ... 169

21. EXCEPTION HANDLING .. 171

Syntax ... 171

Exception Classes in .Net Framework .. 172

Handling Exceptions .. 173

Creating User-Defined Exceptions ... 174

Throwing Objects .. 175

 VB.NET

 7

22. FILE HANDLING .. 176

Binary Files .. 183

23. BASIC CONTROLS ... 193

24. DIALOG BOXES ... 286

25. ADVANCED FORM ... 308

26. EVENT HANDLING .. 331

27. REGULAR EXPRESSIONS ... 337

28. DATABASE ACCESS... 351

29. EXCEL SHEET .. 366

30. SEND EMAIL .. 371

31. XML PROCESSING .. 377

32. WEB PROGRAMMING .. 392

 VB.NET

 8

Visual Basic .NET (VB.NET) is an object-oriented computer programming language

implemented on the .NET Framework. Although it is an evolution of classic Visual

Basic language, it is not backwards-compatible with VB6, and any code written in

the old version does not compile under VB.NET.

Like all other .NET languages, VB.NET has complete support for object-oriented

concepts. Everything in VB.NET is an object, including all of the primitive types

(Short, Integer, Long, String, Boolean, etc.) and user-defined types, events, and

even assemblies. All objects inherits from the base class Object.

VB.NET is implemented by Microsoft's .NET framework. Therefore, it has full

access to all the libraries in the .Net Framework. It's also possible to run VB.NET

programs on Mono, the open-source alternative to .NET, not only under Windows,

but even Linux or Mac OSX.

The following reasons make VB.Net a widely used professional language:

 Modern, general purpose.

 Object oriented.

 Component oriented.

 Easy to learn.

 Structured language.

 It produces efficient programs.

 It can be compiled on a variety of computer platforms.

 Part of .Net Framework.

Strong Programming Features VB.Net

VB.Net has numerous strong programming features that make it endearing to

multitude of programmers worldwide. Let us mention some of these features:

 Boolean Conditions

 Automatic Garbage Collection

 Standard Library

1. Overview

 VB.NET

 9

 Assembly Versioning

 Properties and Events

 Delegates and Events Management

 Easy-to-use Generics

 Indexers

 Conditional Compilation

 Simple Multithreading

 VB.NET

 10

In this chapter, we will discuss the tools available for creating VB.Net applications.

We have already mentioned that VB.Net is part of .Net framework and used for

writing .Net applications. Therefore before discussing the available tools for

running a VB.Net program, let us understand how VB.Net relates to the .Net

framework.

The .Net Framework

The .Net framework is a revolutionary platform that helps you to write the

following types of applications:

 Windows applications

 Web applications

 Web services

The .Net framework applications are multi-platform applications. The framework

has been designed in such a way that it can be used from any of the following

languages: Visual Basic, C#, C++, Jscript, and COBOL, etc.

All these languages can access the framework as well as communicate with each

other.

The .Net framework consists of an enormous library of codes used by the client

languages like VB.Net. These languages use object-oriented methodology.

Following are some of the components of the .Net framework:

 Common Language Runtime (CLR)

 The .Net Framework Class Library

 Common Language Specification

 Common Type System

 Metadata and Assemblies

 Windows Forms

 ASP.Net and ASP.Net AJAX

 ADO.Net

2. Environment Setup

 VB.NET

 11

 Windows Workflow Foundation (WF)

 Windows Presentation Foundation

 Windows Communication Foundation (WCF)

 LINQ

For the jobs each of these components perform, please see ASP.Net - Introduction,

and for details of each component, please consult Microsoft's documentation.

Integrated Development Environment (IDE) For VB.Net

Microsoft provides the following development tools for VB.Net programming:

 Visual Studio 2010 (VS)

 Visual Basic 2010 Express (VBE)

 Visual Web Developer

The last two are free. Using these tools, you can write all kinds of VB.Net programs

from simple command-line applications to more complex applications. Visual Basic

Express and Visual Web Developer Express edition are trimmed down versions of

Visual Studio and has the same look and feel. They retain most features of Visual

Studio. In this tutorial, we have used Visual Basic 2010 Express and Visual Web

Developer (for the web programming chapter).

You can download it from here. It gets automatically installed in your machine.

Please note that you need an active internet connection for installing the express

edition.

Writing VB.Net Programs on Linux or Mac OS

Although the .NET Framework runs on the Windows operating system, there are

some alternative versions that work on other operating systems. Mono is an open-

source version of the .NET Framework which includes a Visual Basic compiler and

runs on several operating systems, including various flavors of Linux and Mac OS.

The most recent version is VB 2012.

The stated purpose of Mono is not only to be able to run Microsoft .NET applications

cross-platform, but also to bring better development tools to Linux developers.

Mono can be run on many operating systems including Android, BSD, iOS, Linux,

OS X, Windows, Solaris and UNIX.

http://localhost/asp.net/asp.net_introduction.htm
http://www.microsoft.com/visualstudio/eng/downloads

 VB.NET

 12

Before we study basic building blocks of the VB.Net programming language, let us

look a bare minimum VB.Net program structure so that we can take it as a

reference in upcoming chapters.

VB.Net Hello World Example

A VB.Net program basically consists of the following parts:

 Namespace declaration

 A class or module

 One or more procedures

 Variables

 The Main procedure

 Statements & Expressions

 Comments

Let us look at a simple code that would print the words "Hello World":

Imports System

Module Module1

 'This program will display Hello World

 Sub Main()

 Console.WriteLine("Hello World")

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Hello, World!

Let us look various parts of the above program:

 The first line of the program Imports System is used to include the System

namespace in the program.

3. Program Structure

 VB.NET

 13

 The next line has a Module declaration, the module Module1. VB.Net is

completely object oriented, so every program must contain a module of a

class that contains the data and procedures that your program uses.

 Classes or Modules generally would contain more than one procedure.

Procedures contain the executable code, or in other words, they define the

behavior of the class. A procedure could be any of the following:

o Function

o Sub

o Operator

o Get

o Set

o AddHandler

o RemoveHandler

o RaiseEvent

 The next line ('This program) will be ignored by the compiler and it has

been put to add additional comments in the program.

 The next line defines the Main procedure, which is the entry point for all

VB.Net programs. The Main procedure states what the module or class will

do when executed.

 The Main procedure specifies its behavior with the statement

Console.WriteLine ("Hello World") WriteLine is a method of

the Console class defined in the System namespace. This statement causes

the message "Hello, World!" to be displayed on the screen.

 The last line Console.ReadKey() is for the VS.NET Users. This will prevent

the screen from running and closing quickly when the program is launched

from Visual Studio .NET.

Compile & Execute VB.Net Program

If you are using Visual Studio.Net IDE, take the following steps:

 Start Visual Studio.

 On the menu bar, choose File New Project.

 Choose Visual Basic from templates

 VB.NET

 14

 Choose Console Application.

 Specify a name and location for your project using the Browse button, and

then choose the OK button.

 The new project appears in Solution Explorer.

 Write code in the Code Editor.

 Click the Run button or the F5 key to run the project. A Command Prompt

window appears that contains the line Hello World.

You can compile a VB.Net program by using the command line instead of the Visual

Studio IDE:

 Open a text editor and add the above mentioned code.

 Save the file as helloworld.vb

 Open the command prompt tool and go to the directory where you saved

the file.

 Type vbc helloworld.vb and press enter to compile your code.

 If there are no errors in your code the command prompt will take you to

the next line and would generate helloworld.exe executable file.

 Next, type helloworld to execute your program.

 You will be able to see "Hello World" printed on the screen.

 VB.NET

 15

VB.Net is an object-oriented programming language. In Object-Oriented

Programming methodology, a program consists of various objects that interact

with each other by means of actions. The actions that an object may take are

called methods. Objects of the same kind are said to have the same type or, more

often, are said to be in the same class.

When we consider a VB.Net program, it can be defined as a collection of objects

that communicate via invoking each other's methods. Let us now briefly look into

what do class, object, methods, and instant variables mean.

 Object - Objects have states and behaviors. Example: A dog has states -

color, name, breed as well as behaviors - wagging, barking, eating, etc. An

object is an instance of a class.

 Class - A class can be defined as a template/blueprint that describes the

behaviors/states that object of its type support.

 Methods - A method is basically a behavior. A class can contain many

methods. It is in methods where the logics are written, data is manipulated

and all the actions are executed.

 Instant Variables - Each object has its unique set of instant variables. An

object's state is created by the values assigned to these instant variables.

A Rectangle Class in VB.Net

For example, let us consider a Rectangle object. It has attributes like length and

width. Depending upon the design, it may need ways for accepting the values of

these attributes, calculating area and displaying details.

Let us look at an implementation of a Rectangle class and discuss VB.Net basic

syntax on the basis of our observations in it:

Imports System

Public Class Rectangle

 Private length As Double

 Private width As Double

 'Public methods

 Public Sub AcceptDetails()

4. Basic Syntax

 VB.NET

 16

 length = 4.5

 width = 3.5

 End Sub

 Public Function GetArea() As Double

 GetArea = length * width

 End Function

 Public Sub Display()

 Console.WriteLine("Length: {0}", length)

 Console.WriteLine("Width: {0}", width)

 Console.WriteLine("Area: {0}", GetArea())

 End Sub

 Shared Sub Main()

 Dim r As New Rectangle()

 r.Acceptdetails()

 r.Display()

 Console.ReadLine()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

Length: 4.5

Width: 3.5

Area: 15.75

In previous chapter, we created a Visual Basic module that held the code. Sub

Main indicates the entry point of VB.Net program. Here, we are using Class that

contains both code and data. You use classes to create objects. For example, in

the code, r is a Rectangle object.

An object is an instance of a class:

Dim r As New Rectangle()

 VB.NET

 17

A class may have members that can be accessible from outside class, if so

specified. Data members are called fields and procedure members are called

methods.

Shared methods or static methods can be invoked without creating an object of

the class. Instance methods are invoked through an object of the class:

Shared Sub Main()

 Dim r As New Rectangle()

 r.Acceptdetails()

 r.Display()

 Console.ReadLine()

End Sub

Identifiers

An identifier is a name used to identify a class, variable, function, or any other

user-defined item. The basic rules for naming classes in VB.Net are as follows:

 A name must begin with a letter that could be followed by a sequence of

letters, digits (0 - 9) or underscore. The first character in an identifier

cannot be a digit.

 It must not contain any embedded space or symbol like ? - +! @ # % ^ &

* () [] { } . ; : " ' / and \. However, an underscore (_) can be used.

 It should not be a reserved keyword.

VB.Net Keywords

The following table lists the VB.Net reserved keywords:

AddHandler AddressOf Alias And AndAlso As Boolean

ByRef Byte ByVal Call Case Catch CBool

CByte CChar CDate CDec CDbl Char CInt

Class CLng CObj Const Continue CSByte CShort

CSng CStr CType CUInt CULng CUShort Date

 VB.NET

 18

Decimal Declare Default Delegate Dim DirectCast Do

Double Each Else ElseIf End End If Enum

Erase Error Event Exit False Finally For

Friend Function Get GetType
GetXML

Namespace

Global GoTo

Handles If Implements Imports In Inherits Integer

Interface Is IsNot Let Lib Like Long

Loop Me Mod Module MustInherit MustOverride MyBase

MyClass Namespace Narrowing New Next Not Nothing

Not

Inheritable

Not

Overridable

Object Of On Operator Option

Optional Or OrElse Overloads Overridable Overrides ParamArray

Partial Private Property Protected Public RaiseEvent ReadOnly

ReDim REM

Remove

Handler

Resume Return SByte Select

Set Shadows Shared Short Single Static Step

Stop String Structure Sub SyncLock Then Throw

To True Try TryCast TypeOf UInteger While

Widening With WithEvents WriteOnly Xor

 VB.NET

 19

Data types refer to an extensive system used for declaring variables or functions

of different types. The type of a variable determines how much space it occupies

in storage and how the bit pattern stored is interpreted.

Data Types Available in VB.Net

VB.Net provides a wide range of data types. The following table shows all the data

types available:

Data Type
Storage

Allocation
Value Range

Boolean

Depends on

implementing

platform

True or False

Byte 1 byte 0 through 255 (unsigned)

Char 2 bytes 0 through 65535 (unsigned)

Date 8 bytes

0:00:00 (midnight) on January 1, 0001

through 11:59:59 PM on December 31,

9999

Decimal 16 bytes

0 through +/-

79,228,162,514,264,337,593,543,950,335

(+/-7.9...E+28) with no decimal point; 0

through +/-

7.9228162514264337593543950335 with

28 places to the right of the decimal

Double 8 bytes

-1.79769313486231570E+308 through -

4.94065645841246544E-324, for negative

values

4.94065645841246544E-324 through

1.79769313486231570E+308, for positive

values

5. Data Types

 VB.NET

 20

Integer 4 bytes
-2,147,483,648 through 2,147,483,647

(signed)

Long 8 bytes
-9,223,372,036,854,775,808 through

9,223,372,036,854,775,807(signed)

Object

4 bytes on 32-bit

platform

8 bytes on 64-bit

platform

Any type can be stored in a variable of type

Object

SByte 1 byte -128 through 127 (signed)

Short 2 bytes -32,768 through 32,767 (signed)

Single 4 bytes

-3.4028235E+38 through -1.401298E-45

for negative values;

1.401298E-45 through 3.4028235E+38 for

positive values

String

Depends on

implementing

platform

0 to approximately 2 billion Unicode

characters

UInteger 4 bytes 0 through 4,294,967,295 (unsigned)

ULong 8 bytes
0 through 18,446,744,073,709,551,615

(unsigned)

User-

Defined

Depends on

implementing

platform

Each member of the structure has a range

determined by its data type and

independent of the ranges of the other

members

UShort 2 bytes 0 through 65,535 (unsigned)

 VB.NET

 21

Example

The following example demonstrates use of some of the types:

Module DataTypes

 Sub Main()

 Dim b As Byte

 Dim n As Integer

 Dim si As Single

 Dim d As Double

 Dim da As Date

 Dim c As Char

 Dim s As String

 Dim bl As Boolean

 b = 1

 n = 1234567

 si = 0.12345678901234566

 d = 0.12345678901234566

 da = Today

 c = "U"c

 s = "Me"

 If ScriptEngine = "VB" Then

 bl = True

 Else

 bl = False

 End If

 If bl Then

 'the oath taking

 Console.Write(c & " and," & s & vbCrLf)

 Console.WriteLine("declaring on the day of: {0}", da)

 Console.WriteLine("We will learn VB.Net seriously")

 Console.WriteLine("Lets see what happens to the floating point

variables:")

 Console.WriteLine("The Single: {0}, The Double: {1}", si, d)

 End If

 Console.ReadKey()

 VB.NET

 22

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

U and, Me

declaring on the day of: 12/4/2012 12:00:00 PM

We will learn VB.Net seriously

Lets see what happens to the floating point variables:

The Single:0.1234568, The Double: 0.123456789012346

The Type Conversion Functions in VB.Net

VB.Net provides the following in-line type conversion functions:

S.N Functions & Description

1 CBool(expression)

Converts the expression to Boolean data type.

2 CByte(expression)

Converts the expression to Byte data type.

3 CChar(expression)

Converts the expression to Char data type.

4 CDate(expression)

Converts the expression to Date data type

5 CDbl(expression)

Converts the expression to Double data type.

6 CDec(expression)

Converts the expression to Decimal data type.

 VB.NET

 23

7 CInt(expression)

Converts the expression to Integer data type.

8 CLng(expression)

Converts the expression to Long data type.

9 CObj(expression)

Converts the expression to Object type.

10 CSByte(expression)

Converts the expression to SByte data type.

11 CShort(expression)

Converts the expression to Short data type.

12 CSng(expression)

Converts the expression to Single data type.

13 CStr(expression)

Converts the expression to String data type.

14 CUInt(expression)

Converts the expression to UInt data type.

15 CULng(expression)

Converts the expression to ULng data type.

16 CUShort(expression)

Converts the expression to UShort data type.

 VB.NET

 24

Example

The following example demonstrates some of these functions:

Module DataTypes

 Sub Main()

 Dim n As Integer

 Dim da As Date

 Dim bl As Boolean = True

 n = 1234567

 da = Today

 Console.WriteLine(bl)

 Console.WriteLine(CSByte(bl))

 Console.WriteLine(CStr(bl))

 Console.WriteLine(CStr(da))

 Console.WriteLine(CChar(CChar(CStr(n))))

 Console.WriteLine(CChar(CStr(da)))

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

True

-1

True

12/4/2012

1

1

 VB.NET

 25

A variable is nothing but a name given to a storage area that our programs can

manipulate. Each variable in VB.Net has a specific type, which determines the size

and layout of the variable's memory; the range of values that can be stored within

that memory; and the set of operations that can be applied to the variable.

We have already discussed various data types. The basic value types provided in

VB.Net can be categorized as:

Type Example

Integral types SByte, Byte, Short, UShort, Integer, UInteger, Long,

ULong and Char

Floating point types Single and Double

Decimal types Decimal

Boolean types True or False values, as assigned

Date types Date

VB.Net also allows defining other value types of variable like Enum and reference

types of variables like Class. We will discuss date types and Classes in subsequent

chapters.

Variable Declaration in VB.Net

The Dim statement is used for variable declaration and storage allocation for one

or more variables. The Dim statement is used at module, class, structure,

procedure, or block level.

Syntax for variable declaration in VB.Net is:

[< attributelist>] [accessmodifier] [[Shared] [Shadows] |

[Static]]

[ReadOnly] Dim [WithEvents] variablelist

Where,

 attributelist is a list of attributes that apply to the variable. Optional.

6. Variables

 VB.NET

 26

 accessmodifier defines the access levels of the variables, it has values as

- Public, Protected, Friend, Protected Friend and Private. Optional.

 Shared declares a shared variable, which is not associated with any specific

instance of a class or structure, rather available to all the instances of the

class or structure. Optional.

 Shadows indicate that the variable re-declares and hides an identically

named element, or set of overloaded elements, in a base class. Optional.

 Static indicates that the variable will retain its value, even when the after

termination of the procedure in which it is declared. Optional.

 ReadOnly means the variable can be read, but not written. Optional.

 WithEvents specifies that the variable is used to respond to events raised

by the instance assigned to the variable. Optional.

 Variablelist provides the list of variables declared.

Each variable in the variable list has the following syntax and parts:

variablename[([boundslist])] [As [New] datatype] [=

initializer]

Where,

 variablename: is the name of the variable

 boundslist: optional. It provides list of bounds of each dimension of an

array variable.

 New: optional. It creates a new instance of the class when the Dim

statement runs.

 datatype: Required if Option Strict is On. It specifies the data type of the

variable.

 initializer: Optional if New is not specified. Expression that is evaluated

and assigned to the variable when it is created.

Some valid variable declarations along with their definition are shown here:

Dim StudentID As Integer

Dim StudentName As String

Dim Salary As Double

 VB.NET

 27

Dim count1, count2 As Integer

Dim status As Boolean

Dim exitButton As New System.Windows.Forms.Button

Dim lastTime, nextTime As Date

Variable Initialization in VB.Net

Variables are initialized (assigned a value) with an equal sign followed by a

constant expression. The general form of initialization is:

variable_name = value;

for example,

Dim pi As Double

pi = 3.14159

You can initialize a variable at the time of declaration as follows:

Dim StudentID As Integer = 100

Dim StudentName As String = "Bill Smith"

Example

Try the following example which makes use of various types of variables:

Module variablesNdataypes

 Sub Main()

 Dim a As Short

 Dim b As Integer

 Dim c As Double

 a = 10

 b = 20

 c = a + b

 Console.WriteLine("a = {0}, b = {1}, c = {2}", a, b, c)

 Console.ReadLine()

 End Sub

End Module

 VB.NET

 28

When the above code is compiled and executed, it produces the following result:

a = 10, b = 20, c = 30

Accepting Values from User

The Console class in the System namespace provides a function ReadLine for

accepting input from the user and store it into a variable. For example,

Dim message As String

message = Console.ReadLine

The following example demonstrates it:

Module variablesNdataypes

 Sub Main()

 Dim message As String

 Console.Write("Enter message: ")

 message = Console.ReadLine

 Console.WriteLine()

 Console.WriteLine("Your Message: {0}", message)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result

(assume the user inputs Hello World):

Enter message: Hello World

Your Message: Hello World

Lvalues and Rvalues

There are two kinds of expressions:

 lvalue : An expression that is an lvalue may appear as either the left-hand

or right-hand side of an assignment.

 rvalue : An expression that is an rvalue may appear on the right- but not

left-hand side of an assignment.

 VB.NET

 29

Variables are lvalues and so may appear on the left-hand side of an assignment.

Numeric literals are rvalues and so may not be assigned and can not appear on

the left-hand side. Following is a valid statement:

Dim g As Integer = 20

But following is not a valid statement and would generate compile-time error:

20 = g

 VB.NET

 30

The constants refer to fixed values that the program may not alter during its

execution. These fixed values are also called literals.

Constants can be of any of the basic data types like an integer constant, a floating

constant, a character constant, or a string literal. There are also enumeration

constants as well.

The constants are treated just like regular variables except that their values

cannot be modified after their definition.

An enumeration is a set of named integer constants.

Declaring Constants

In VB.Net, constants are declared using the Const statement. The Const

statement is used at module, class, structure, procedure, or block level for use in

place of literal values.

The syntax for the Const statement is:

[< attributelist>] [accessmodifier] [Shadows]

Const constantlist

Where,

 attributelist: specifies the list of attributes applied to the constants; you

can provide multiple attributes separated by commas. Optional.

 accessmodifier: specifies which code can access these constants.

Optional. Values can be either of the: Public, Protected, Friend, Protected

Friend, or Private.

 Shadows: this makes the constant hide a programming element of

identical name in a base class. Optional.

 Constantlist: gives the list of names of constants declared. Required.

Where, each constant name has the following syntax and parts:

constantname [As datatype] = initializer

 constantname: specifies the name of the constant

 datatype: specifies the data type of the constant

7. Constants and Enumerations

 VB.NET

 31

 initializer: specifies the value assigned to the constant

For example,

' The following statements declare constants.

Const maxval As Long = 4999

Public Const message As String = "HELLO"

Private Const piValue As Double = 3.1415

Example

The following example demonstrates declaration and use of a constant value:

Module constantsNenum

 Sub Main()

 Const PI = 3.14149

 Dim radius, area As Single

 radius = 7

 area = PI * radius * radius

 Console.WriteLine("Area = " & Str(area))

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Area = 153.933

Print and Display Constants in VB.Net

VB.Net provides the following print and display constants:

Constant Description

vbCrLf Carriage return/linefeed character combination.

vbCr Carriage return character.

vbLf Linefeed character.

 VB.NET

 32

vbNewLine Newline character.

vbNullChar Null character.

vbNullString Not the same as a zero-length string (""); used for calling

external procedures.

vbObjectError Error number. User-defined error numbers should be

greater than this value. For example:

Err.Raise(Number) = vbObjectError + 1000

vbTab Tab character.

vbBack Backspace character.

Declaring Enumerations

An enumerated type is declared using the Enum statement. The Enum statement

declares an enumeration and defines the values of its members. The Enum

statement can be used at the module, class, structure, procedure, or block level.

The syntax for the Enum statement is as follows:

[< attributelist >] [accessmodifier] [Shadows]

Enum enumerationname [As datatype]

 memberlist

End Enum

Where,

 attributelist: refers to the list of attributes applied to the variable.

Optional.

 asscessmodifier: specifies which code can access these enumerations.

Optional. Values can be either of the: Public, Protected, Friend, or Private.

 Shadows: this makes the enumeration hide a programming element of

identical name in a base class. Optional.

 enumerationname: name of the enumeration. Required

 datatype: specifies the data type of the enumeration and all its members.

 VB.NET

 33

 memberlist: specifies the list of member constants being declared in this

statement. Required.

Each member in the memberlist has the following syntax and parts:

[< attribute list>] member name [= initializer]

Where,

 name: specifies the name of the member. Required.

 initializer: value assigned to the enumeration member. Optional.

For example,

Enum Colors

 red = 1

 orange = 2

 yellow = 3

 green = 4

 azure = 5

 blue = 6

 violet = 7

End Enum

Example

The following example demonstrates declaration and use of the Enum

variable Colors:

Module constantsNenum

 Enum Colors

 red = 1

 orange = 2

 yellow = 3

 green = 4

 azure = 5

 blue = 6

 violet = 7

 End Enum

 Sub Main()

 VB.NET

 34

 Console.WriteLine("The Color Red is : " & Colors.red)

 Console.WriteLine("The Color Yellow is : " & Colors.yellow)

 Console.WriteLine("The Color Blue is : " & Colors.blue)

 Console.WriteLine("The Color Green is : " & Colors.green)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

The Color Red is: 1

The Color Yellow is: 3

The Color Blue is: 6

The Color Green is: 4

 VB.NET

 35

The modifiers are keywords added with any programming element to give some

especial emphasis on how the programming element will behave or will be

accessed in the program

For example, the access modifiers: Public, Private, Protected, Friend, Protected

Friend, etc., indicate the access level of a programming element like a variable,

constant, enumeration, or a class.

List of Available Modifiers in VB.Net

The following table provides the complete list of VB.Net modifiers:

S.N Modifier Description

1 Ansi

Specifies that Visual Basic should marshal all strings

to American National Standards Institute (ANSI)

values regardless of the name of the external

procedure being declared.

2 Assembly
Specifies that an attribute at the beginning of a source

file applies to the entire assembly.

3 Async

Indicates that the method or lambda expression that

it modifies is asynchronous. Such methods are

referred to as async methods. The caller of an async

method can resume its work without waiting for the

async method to finish.

4 Auto

The charsetmodifier part in the Declare statement

supplies the character set information for marshaling

strings during a call to the external procedure. It also

affects how Visual Basic searches the external file for

the external procedure name. The Auto modifier

specifies that Visual Basic should marshal strings

according to .NET Framework rules.

5 ByRef Specifies that an argument is passed by reference,

i.e., the called procedure can change the value of a

8. Modifiers

 VB.NET

 36

variable underlying the argument in the calling code.

It is used under the contexts of:

Declare Statement

Function Statement

Sub Statement

6 ByVal

Specifies that an argument is passed in such a way

that the called procedure or property cannot change

the value of a variable underlying the argument in the

calling code. It is used under the contexts of:

Declare Statement

Function Statement

Operator Statement

Property Statement

Sub Statement

7 Default
Identifies a property as the default property of its

class, structure, or interface.

8 Friend

Specifies that one or more declared programming

elements are accessible from within the assembly

that contains their declaration, not only by the

component that declares them.

Friend access is often the preferred level for an

application's programming elements, and Friend is

the default access level of an interface, a module, a

class, or a structure.

9 In It is used in generic interfaces and delegates.

10 Iterator

Specifies that a function or Get accessor is an iterator.

Aniterator performs a custom iteration over a

collection.

11 Key
The Key keyword enables you to specify behavior for

properties of anonymous types.

 VB.NET

 37

12 Module

Specifies that an attribute at the beginning of a source

file applies to the current assembly module. It is not

same as the Module statement.

13 MustInherit
Specifies that a class can be used only as a base class

and that you cannot create an object directly from it.

14 MustOverride

Specifies that a property or procedure is not

implemented in this class and must be overridden in

a derived class before it can be used.

15 Narrowing

Indicates that a conversion operator (CType) converts

a class or structure to a type that might not be able

to hold some of the possible values of the original

class or structure.

16 NotInheritable Specifies that a class cannot be used as a base class.

17 NotOverridable
Specifies that a property or procedure cannot be

overridden in a derived class.

18 Optional
Specifies that a procedure argument can be omitted

when the procedure is called.

19 Out
For generic type parameters, the Out keyword

specifies that the type is covariant.

20 Overloads

Specifies that a property or procedure redeclares one

or more existing properties or procedures with the

same name.

21 Overridable

Specifies that a property or procedure can be

overridden by an identically named property or

procedure in a derived class.

22 Overrides

Specifies that a property or procedure overrides an

identically named property or procedure inherited

from a base class.

 VB.NET

 38

23 ParamArray

ParamArray allows you to pass an arbitrary number

of arguments to the procedure. A ParamArray

parameter is always declared using ByVal.

24 Partial
Indicates that a class or structure declaration is a

partial definition of the class or structure.

25 Private

Specifies that one or more declared programming

elements are accessible only from within their

declaration context, including from within any

contained types.

26 Protected

Specifies that one or more declared programming

elements are accessible only from within their own

class or from a derived class.

27 Public
Specifies that one or more declared programming

elements have no access restrictions.

28 ReadOnly
Specifies that a variable or property can be read but

not written.

29 Shadows

Specifies that a declared programming element

redeclares and hides an identically named element,

or set of overloaded elements, in a base class.

30 Shared

Specifies that one or more declared programming

elements are associated with a class or structure at

large, and not with a specific instance of the class or

structure.

31 Static

Specifies that one or more declared local variables are

to continue to exist and retain their latest values after

termination of the procedure in which they are

declared.

32 Unicode

Specifies that Visual Basic should marshal all strings

to Unicode values regardless of the name of the

external procedure being declared.

 VB.NET

 39

33 Widening

Indicates that a conversion operator (CType) converts

a class or structure to a type that can hold all possible

values of the original class or structure.

34 WithEvents
Specifies that one or more declared member variables

refer to an instance of a class that can raise events.

35 WriteOnly Specifies that a property can be written but not read.

 VB.NET

 40

A statement is a complete instruction in Visual Basic programs. It may contain

keywords, operators, variables, literal values, constants, and expressions.

Statements could be categorized as:

 Declaration statements - these are the statements where you name a

variable, constant, or procedure, and can also specify a data type.

 Executable statements - these are the statements, which initiate actions.

These statements can call a method or function, loop or branch through

blocks of code or assign values or expression to a variable or constant. In

the last case, it is called an Assignment statement.

Declaration Statements

The declaration statements are used to name and define procedures, variables,

properties, arrays, and constants. When you declare a programming element, you

can also define its data type, access level, and scope.

The programming elements you may declare include variables, constants,

enumerations, classes, structures, modules, interfaces, procedures, procedure

parameters, function returns, external procedure references, operators,

properties, events, and delegates.

Following are the declaration statements in VB.Net:

S.N Statements and Description Example

1 Dim Statement

Declares and allocates storage space for one

or more variables.

Dim number As

Integer

Dim quantity As

Integer = 100

Dim message As

String = "Hello!"

2 Const Statement

Declares and defines one or more constants. Const maximum As

Long = 1000

9. Statements

 VB.NET

 41

Const naturalLogBase

As Object

= CDec(2.7182818284)

3 Enum Statement

Declares an enumeration and defines the

values of its members.

Enum CoffeeMugSize

 Jumbo

 ExtraLarge

 Large

 Medium

 Small

End Enum

4 Class Statement

Declares the name of a class and introduces

the definition of the variables, properties,

events, and procedures that the class

comprises.

Class Box

Public length As

Double

Public breadth As

Double

Public height As

Double

End Class

5 Structure Statement

Declares the name of a structure and

introduces the definition of the variables,

properties, events, and procedures that the

structure comprises.

Structure Box

Public length As

Double

Public breadth As
Double

Public height As

Double

End Structure

 VB.NET

 42

6 Module Statement

Declares the name of a module and

introduces the definition of the variables,

properties, events, and procedures that the

module comprises.

Public Module

myModule

Sub Main()

Dim user As String =

InputBox("What is
your name?")

MsgBox("User name

is" & user)

End Sub

End Module

7 Interface Statement

Declares the name of an interface and

introduces the definitions of the members

that the interface comprises.

Public Interface

MyInterface

 Sub

doSomething()

End Interface

8 Function Statement

Declares the name, parameters, and code

that define a Function procedure.

Function myFunction

(ByVal n As Integer)
As Double

 Return 5.87 * n

End Function

9 Sub Statement

Declares the name, parameters, and code

that define a Sub procedure.

Sub mySub(ByVal s As

String)

 Return

End Sub

10 Declare Statement

Declares a reference to a procedure

implemented in an external file.

Declare Function

getUserName

Lib "advapi32.dll"

Alias "GetUserNameA"

(

 VB.NET

 43

 ByVal lpBuffer As

String,

 ByRef nSize As

Integer) As Integer

11 Operator Statement

Declares the operator symbol, operands, and

code that define an operator procedure on a

class or structure.

Public Shared

Operator +

(ByVal x As obj,
ByVal y As obj) As

obj

 Dim r As New

obj

' implemention code

for r = x + y

 Return r

 End Operator

12 Property Statement

Declares the name of a property, and the

property procedures used to store and

retrieve the value of the property.

ReadOnly Property

quote() As String

 Get

 Return

quoteString

 End Get

End Property

13 Event Statement

Declares a user-defined event.
Public Event

Finished()

14 Delegate Statement

Used to declare a delegate.
Delegate Function

MathOperator(

 ByVal x As

Double,

 ByVal y As

Double

) As Double

 VB.NET

 44

Executable Statements

An executable statement performs an action. Statements calling a procedure,

branching to another place in the code, looping through several statements, or

evaluating an expression are executable statements. An assignment statement is

a special case of an executable statement.

Example

The following example demonstrates a decision making statement:

Module decisions

 Sub Main()

 'local variable definition '

 Dim a As Integer = 10

 ' check the boolean condition using if statement '

 If (a < 20) Then

 ' if condition is true then print the following '

 Console.WriteLine("a is less than 20")

 End If

 Console.WriteLine("value of a is : {0}", a)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

a is less than 20;

value of a is : 10

 VB.NET

 45

The VB.Net compiler directives give instructions to the compiler to preprocess the

information before actual compilation starts. All these directives begin with #, and

only white-space characters may appear before a directive on a line. These

directives are not statements.

VB.Net compiler does not have a separate preprocessor; however, the directives

are processed as if there was one. In VB.Net, the compiler directives are used to

help in conditional compilation. Unlike C and C++ directives, they are not used to

create macros.

Compiler Directives in VB.Net

VB.Net provides the following set of compiler directives:

 The #Const Directive

 The #ExternalSource Directive

 The #If...Then...#Else Directives

 The #Region Directive

The #Const Directive

This directive defines conditional compiler constants. Syntax for this directive is:

#Const constname = expression

Where,

 constname: specifies the name of the constant. Required.

 expression: it is either a literal, or other conditional compiler constant, or

a combination including any or all arithmetic or logical operators except Is.

For example,

#Const state = "WEST BENGAL"

10. Directives

 VB.NET

 46

Example

The following code demonstrates a hypothetical use of the directive:

Module mydirectives

#Const age = True

Sub Main()

 #If age Then

 Console.WriteLine("You are welcome to the Robotics Club")

 #End If

 Console.ReadKey()

End Sub

End Module

When the above code is compiled and executed, it produces the following result:

You are welcome to the Robotics Club

The #ExternalSource Directive

This directive is used for indicating a mapping between specific lines of source

code and text external to the source. It is used only by the compiler and the

debugger has no effect on code compilation.

This directive allows including external code from an external code file into a

source code file.

Syntax for this directive is:

#ExternalSource(StringLiteral , IntLiteral)

 [LogicalLine]

#End ExternalSource

The parameters of #ExternalSource directive are the path of external file, line

number of the first line, and the line where the error occurred.

Example

The following code demonstrates a hypothetical use of the directive:

Module mydirectives

 Public Class ExternalSourceTester

 Sub TestExternalSource()

 VB.NET

 47

 #ExternalSource("c:\vbprogs\directives.vb", 5)

 Console.WriteLine("This is External Code. ")

 #End ExternalSource

 End Sub

 End Class

 Sub Main()

 Dim t As New ExternalSourceTester()

 t.TestExternalSource()

 Console.WriteLine("In Main.")

 Console.ReadKey()

 End Sub

When the above code is compiled and executed, it produces the following result:

This is External Code.

In Main.

The #If...Then...#Else Directives

This directive conditionally compiles selected blocks of Visual Basic code.

Syntax for this directive is:

#If expression Then

 statements

[#ElseIf expression Then

 [statements]

...

#ElseIf expression Then

 [statements]]

[#Else

 [statements]]

#End If

 VB.NET

 48

For example,

#Const TargetOS = "Linux"

#If TargetOS = "Windows 7" Then

 ' Windows 7 specific code

#ElseIf TargetOS = "WinXP" Then

 ' Windows XP specific code

#Else

 ' Code for other OS

#End if

Example

The following code demonstrates a hypothetical use of the directive:

Module mydirectives

#Const classCode = 8

 Sub Main()

 #If classCode = 7 Then

 Console.WriteLine("Exam Questions for Class VII")

 #ElseIf classCode = 8 Then

 Console.WriteLine("Exam Questions for Class VIII")

 #Else

 Console.WriteLine("Exam Questions for Higher Classes")

 #End If

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Exam Questions for Class VIII

The #Region Directive

This directive helps in collapsing and hiding sections of code in Visual Basic files.

Syntax for this directive is:

 VB.NET

 49

#Region "identifier_string"

#End Region

For example,

#Region "StatsFunctions"

 ' Insert code for the Statistical functions here.

#End Region

 VB.NET

 50

An operator is a symbol that tells the compiler to perform specific mathematical

or logical manipulations. VB.Net is rich in built-in operators and provides following

types of commonly used operators:

 Arithmetic Operators

 Comparison Operators

 Logical/Bitwise Operators

 Bit Shift Operators

 Assignment Operators

 Miscellaneous Operators

This tutorial will explain the most commonly used operators.

Arithmetic Operators

Following table shows all the arithmetic operators supported by VB.Net. Assume

variable A holds 2 and variable B holds 7, then:

Operator Description Example

^ Raises one operand to the power of another B^A will give 49

+ Adds two operands A + B will give 9

- Subtracts second operand from the first A - B will give -5

* Multiplies both operands A * B will give 14

/ Divides one operand by another and

returns a floating point result

B / A will give 3.5

\ Divides one operand by another and

returns an integer result

B \ A will give 3

MOD Modulus Operator and remainder of

after an integer division

B MOD A will give 1

11. Operators

 VB.NET

 51

Example

Try the following example to understand all the arithmetic operators available in

VB.Net:

Module operators

 Sub Main()

 Dim a As Integer = 21

 Dim b As Integer = 10

 Dim p As Integer = 2

 Dim c As Integer

 Dim d As Single

 c = a + b

 Console.WriteLine("Line 1 - Value of c is {0}", c)

 c = a - b

 Console.WriteLine("Line 2 - Value of c is {0}", c)

 c = a * b

 Console.WriteLine("Line 3 - Value of c is {0}", c)

 d = a / b

 Console.WriteLine("Line 4 - Value of d is {0}", d)

 c = a \ b

 Console.WriteLine("Line 5 - Value of c is {0}", c)

 c = a Mod b

 Console.WriteLine("Line 6 - Value of c is {0}", c)

 c = b ^ p

 Console.WriteLine("Line 7 - Value of c is {0}", c)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Line 1 - Value of c is 31

Line 2 - Value of c is 11

Line 3 - Value of c is 210

Line 4 - Value of d is 2.1

Line 5 - Value of c is 2

 VB.NET

 52

Line 6 - Value of c is 1

Line 7 - Value of c is 100

Comparison Operators

Following table shows all the comparison operators supported by VB.Net. Assume

variable A holds 10 and variable B holds 20, then:

Operator Description Example

= Checks if the values of two operands are equal

or not; if yes, then condition becomes true.

(A = B) is not

true.

<> Checks if the values of two operands are equal

or not; if values are not equal, then condition

becomes true.

(A <> B) is true.

> Checks if the value of left operand is greater than

the value of right operand; if yes, then condition

becomes true.

(A > B) is not

true.

< Checks if the value of left operand is less than

the value of right operand; if yes, then condition

becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater than

or equal to the value of right operand; if yes,

then condition becomes true.

(A >= B) is not

true.

<= Checks if the value of left operand is less than or

equal to the value of right operand; if yes, then

condition becomes true.

(A <= B) is true.

Try the following example to understand all the relational operators available in

VB.Net:

Module operators

 Sub Main()

 Dim a As Integer = 21

 Dim b As Integer = 10

 VB.NET

 53

 If (a = b) Then

 Console.WriteLine("Line 1 - a is equal to b")

 Else

 Console.WriteLine("Line 1 - a is not equal to b")

 End If

 If (a < b) Then

 Console.WriteLine("Line 2 - a is less than b")

 Else

 Console.WriteLine("Line 2 - a is not less than b")

 End If

 If (a > b) Then

 Console.WriteLine("Line 3 - a is greater than b")

 Else

 Console.WriteLine("Line 3 - a is not greater than b")

 End If

 ' Lets change value of a and b

 a = 5

 b = 20

 If (a <= b) Then

 Console.WriteLine("Line 4 - a is either less than or equal to

b")

 End If

 If (b >= a) Then

 Console.WriteLine("Line 5 - b is either greater than or equal

to b")

 End If

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Line 1 - a is not equal to b

Line 2 - a is not less than b

Line 3 - a is greater than b

Line 4 - a is either less than or equal to b

 VB.NET

 54

Line 5 - b is either greater than or equal to b

Apart from the above, VB.Net provides three more comparison operators, which

we will be using in forthcoming chapters; however, we give a brief description

here.

 Is Operator - It compares two object reference variables and determines if

two object references refer to the same object without performing value

comparisons. If object1 and object2 both refer to the exact same object

instance, result is True; otherwise, result is False.

 IsNot Operator - It also compares two object reference variables and

determines if two object references refer to different objects. If object1 and

object2 both refer to the exact same object instance, result is False;

otherwise, result is True.

 Like Operator - It compares a string against a pattern.

Apart from the above, VB.Net provides three more comparison operators, which

we will be using in forthcoming chapters; however, we give a brief description

here.

 Is Operator - It compares two object reference variables and determines if

two object references refer to the same object without performing value

comparisons. If object1 and object2 both refer to the exact same object

instance, result is True; otherwise, result is False.

 IsNot Operator - It also compares two object reference variables and

determines if two object references refer to different objects. If object1 and

object2 both refer to the exact same object instance, result is False;

otherwise, result is True.

 Like Operator - It compares a string against a pattern.

Logical/Bitwise Operators

Following table shows all the logical operators supported by VB.Net. Assume

variable A holds Boolean value True and variable B holds Boolean value False,

then:

Operator Description Example

And It is the logical as well as bitwise AND operator.

If both the operands are true, then condition

becomes true. This operator does not perform

short-circuiting, i.e., it evaluates both the

expressions.

(A And B) is

False.

 VB.NET

 55

Or It is the logical as well as bitwise OR operator. If

any of the two operands is true, then condition

becomes true. This operator does not perform

short-circuiting, i.e., it evaluates both the

expressions.

(A Or B) is True.

Not It is the logical as well as bitwise NOT operator.

Use to reverses the logical state of its operand. If

a condition is true, then Logical NOT operator will

make false.

Not(A And B) is

True.

Xor It is the logical as well as bitwise Logical Exclusive

OR operator. It returns True if both expressions

are True or both expressions are False; otherwise

it returns False. This operator does not perform

short-circuiting, it always evaluates both

expressions and there is no short-circuiting

counterpart of this operator.

A Xor B is True.

AndAlso It is the logical AND operator. It works only on

Boolean data. It performs short-circuiting.

(A AndAlso B) is

False.

OrElse It is the logical OR operator. It works only on

Boolean data. It performs short-circuiting.

(A OrElse B) is

True.

IsFalse It determines whether an expression is False.

IsTrue It determines whether an expression is True.

Example

Try the following example to understand all the logical/bitwise operators available

in VB.Net:

Module logicalOp

 Sub Main()

 Dim a As Boolean = True

 Dim b As Boolean = True

 Dim c As Integer = 5

 VB.NET

 56

 Dim d As Integer = 20

 'logical And, Or and Xor Checking

 If (a And b) Then

 Console.WriteLine("Line 1 - Condition is true")

 End If

 If (a Or b) Then

 Console.WriteLine("Line 2 - Condition is true")

 End If

 If (a Xor b) Then

 Console.WriteLine("Line 3 - Condition is true")

 End If

 'bitwise And, Or and Xor Checking

 If (c And d) Then

 Console.WriteLine("Line 4 - Condition is true")

 End If

 If (c Or d) Then

 Console.WriteLine("Line 5 - Condition is true")

 End If

 If (c Or d) Then

 Console.WriteLine("Line 6 - Condition is true")

 End If

 'Only logical operators

 If (a AndAlso b) Then

 Console.WriteLine("Line 7 - Condition is true")

 End If

 If (a OrElse b) Then

 Console.WriteLine("Line 8 - Condition is true")

 End If

 ' lets change the value of a and b

 a = False

 b = True

 If (a And b) Then

 Console.WriteLine("Line 9 - Condition is true")

 VB.NET

 57

 Else

 Console.WriteLine("Line 9 - Condition is not true")

 End If

 If (Not (a And b)) Then

 Console.WriteLine("Line 10 - Condition is true")

 End If

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Line 1 - Condition is true

Line 2 - Condition is true

Line 3 - Condition is true

Line 4 - Condition is true

Line 5 - Condition is true

Line 6 - Condition is true

Line 7 - Condition is true

Line 8 - Condition is true

Line 9 - Condition is not true

Line 10 - Condition is true

Bit Shift Operators

We have already discussed the bitwise operators. The bit shift operators perform

the shift operations on binary values. Before coming into the bit shift operators,

let us understand the bit operations.

Bitwise operators work on bits and perform bit-by-bit operations. The truth tables

for &, |, and ^ are as follows:

P q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

 VB.NET

 58

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows:

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

We have seen that the Bitwise operators supported by VB.Net are And, Or, Xor

and Not. The Bit shift operators are >> and << for left shift and right shift,

respectively.

Assume that the variable A holds 60 and variable B holds 13, then:

Operator Description Example

And Bitwise AND Operator copies a bit to the

result if it exists in both operands.

(A AND B) will give 12,

which is 0000 1100

Or Binary OR Operator copies a bit if it

exists in either operand.

(A Or B) will give 61,

which is 0011 1101

Xor Binary XOR Operator copies the bit if it

is set in one operand but not both.

(A Xor B) will give 49,

which is 0011 0001

Not Binary Ones Complement Operator is

unary and has the effect of 'flipping'

bits.

(Not A) will give -61,

which is 1100 0011 in 2's

complement form due to a

signed binary number.

<< Binary Left Shift Operator. The left

operands value is moved left by the

A << 2 will give 240,

which is 1111 0000

 VB.NET

 59

number of bits specified by the right

operand.

>> Binary Right Shift Operator. The left

operands value is moved right by the

number of bits specified by the right

operand.

A >> 2 will give 15, which

is 0000 1111

Example

Try the following example to understand all the bitwise operators available in

VB.Net:

Module BitwiseOp

 Sub Main()

 Dim a As Integer = 60 ' 60 = 0011 1100

 Dim b As Integer = 13 ' 13 = 0000 1101

 Dim c As Integer = 0

 c = a And b ' 12 = 0000 1100

 Console.WriteLine("Line 1 - Value of c is {0}", c)

 c = a Or b ' 61 = 0011 1101

 Console.WriteLine("Line 2 - Value of c is {0}", c)

 c = a Xor b ' 49 = 0011 0001

 Console.WriteLine("Line 3 - Value of c is {0}", c)

 c = Not a ' -61 = 1100 0011

 Console.WriteLine("Line 4 - Value of c is {0}", c)

 c = a << 2 ' 240 = 1111 0000

 Console.WriteLine("Line 5 - Value of c is {0}", c)

 c = a >> 2 ' 15 = 0000 1111

 Console.WriteLine("Line 6 - Value of c is {0}", c)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Line 1 - Value of c is 12

Line 2 - Value of c is 61

 VB.NET

 60

Line 3 - Value of c is 49

Line 4 - Value of c is -61

Line 5 - Value of c is 240

Line 6 - Value of c is 15

Assignment Operators

There are following assignment operators supported by VB.Net:

Operator Description Example

= Simple assignment operator, Assigns values

from right side operands to left side operand

C = A + B will assign

value of A + B into C

+= Add AND assignment operator, It adds right

operand to the left operand and assigns the

result to left operand

C += A is equivalent

to C = C + A

-= Subtract AND assignment operator, It

subtracts right operand from the left operand

and assigns the result to left operand

C -= A is equivalent

to C = C - A

*= Multiply AND assignment operator, It

multiplies right operand with the left operand

and assigns the result to left operand

C *= A is equivalent

to C = C * A

/= Divide AND assignment operator, It divides

left operand with the right operand and

assigns the result to left operand (floating

point division)

C /= A is equivalent

to C = C / A

\= Divide AND assignment operator, It divides

left operand with the right operand and

assigns the result to left operand (Integer

division)

C \= A is equivalent

to C = C \A

^= Exponentiation and assignment operator. It

raises the left operand to the power of the

right operand and assigns the result to left

operand.

C^=A is equivalent

to C = C ^ A

 VB.NET

 61

<<= Left shift AND assignment operator C <<= 2 is same as

C = C << 2

>>= Right shift AND assignment operator C >>= 2 is same as

C = C >> 2

&= Concatenates a String expression to a String

variable or property and assigns the result to

the variable or property.

Str1 &= Str2 is same

as

Str1 = Str1 & Str2

Example

Try the following example to understand all the assignment operators available in

VB.Net:

Module assignment

 Sub Main()

 Dim a As Integer = 21

 Dim pow As Integer = 2

 Dim str1 As String = "Hello! "

 Dim str2 As String = "VB Programmers"

 Dim c As Integer

 c = a

 Console.WriteLine("Line 1 - = Operator Example, _

 Value of c = {0}", c)

 c += a

 Console.WriteLine("Line 2 - += Operator Example, _

 Value of c = {0}", c)

 c -= a

 Console.WriteLine("Line 3 - -= Operator Example, _

 Value of c = {0}", c)

 c *= a

 Console.WriteLine("Line 4 - *= Operator Example, _

 Value of c = {0}", c)

 c /= a

 Console.WriteLine("Line 5 - /= Operator Example, _

 VB.NET

 62

 Value of c = {0}", c)

 c = 20

 c ^= pow

 Console.WriteLine("Line 6 - ^= Operator Example, _

 Value of c = {0}", c)

 c <<= 2

 Console.WriteLine("Line 7 - <<= Operator Example,_

 Value of c = {0}", c)

 c >>= 2

 Console.WriteLine("Line 8 - >>= Operator Example,_

 Value of c = {0}", c)

 str1 &= str2

 Console.WriteLine("Line 9 - &= Operator Example,_

 Value of str1 = {0}", str1)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Line 1 - = Operator Example, Value of c = 21

Line 2 - += Operator Example, Value of c = 42

Line 3 - -= Operator Example, Value of c = 21

Line 4 - *= Operator Example, Value of c = 441

Line 5 - /= Operator Example, Value of c = 21

Line 6 - ^= Operator Example, Value of c = 400

Line 7 - <<= Operator Example, Value of c = 1600

Line 8 - >>= Operator Example, Value of c = 400

Line 9 - &= Operator Example, Value of str1 = Hello! VB Programmers

Miscellaneous Operators

There are few other important operators supported by VB.Net.

Operator Description Example

 VB.NET

 63

AddressOf Returns the address of

a procedure. AddHandler Button1.Click,

AddressOf Button1_Click

Await It is applied to an

operand in an

asynchronous method

or lambda expression

to suspend execution

of the method until the

awaited task

completes.

Dim result As res

= Await

AsyncMethodThatReturnsResult()

Await AsyncMethod()

GetType It returns a Type

object for the specified

type. The Type object

provides information

about the type such as

its properties,

methods, and events.

MsgBox(GetType(Integer).ToString())

Function

Expression

It declares the

parameters and code

that define a function

lambda expression.

Dim add5 = Function(num As

 Integer) num + 5

'prints 10

Console.WriteLine(add5(5))

If It uses short-circuit

evaluation to

conditionally return

one of two values. The

If operator can be

called with three

arguments or with two

arguments.

Dim num = 5

Console.WriteLine(If(num >= 0,

"Positive", "Negative"))

Example

The following example demonstrates some of these operators:

Module assignment

 Sub Main()

 VB.NET

 64

 Dim a As Integer = 21

 Console.WriteLine(GetType(Integer).ToString())

 Console.WriteLine(GetType(Double).ToString())

 Console.WriteLine(GetType(String).ToString())

 Dim multiplywith5 = Function(num As Integer) num * 5

 Console.WriteLine(multiplywith5(5))

 Console.WriteLine(If(a >= 0, "Positive", "Negative"))

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

System.Int32

System.Double

System.String

25

Positive

Operators Precedence in VB.Net

Operator precedence determines the grouping of terms in an expression. This

affects how an expression is evaluated. Certain operators have higher precedence

than others; for example, the multiplication operator has higher precedence than

the addition operator:

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator *

has higher precedence than +, so it first gets multiplied with 3*2 and then adds

into 7.

Here, operators with the highest precedence appear at the top of the table, those

with the lowest appear at the bottom. Within an expression, higher precedence

operators will be evaluated first.

Operator Precedence

Await Highest

Exponentiation (^)

 VB.NET

 65

Unary identity and negation (+, -)

Multiplication and floating-point division (*, /)

Integer division (\)

Modulus arithmetic (Mod)

Addition and subtraction (+, -)

Arithmetic bit shift (<<, >>)

All comparison operators (=, <>, <, <=, >, >=, Is, IsNot, Like,

TypeOf...Is)

Negation (Not)

Conjunction (And, AndAlso)

Inclusive disjunction (Or, OrElse)

Exclusive disjunction (Xor) Lowest

Example

The following example demonstrates operator precedence in a simple way:

Module assignment

 Sub Main()

 Dim a As Integer = 20

 Dim b As Integer = 10

 Dim c As Integer = 15

 Dim d As Integer = 5

 Dim e As Integer

 e = (a + b) * c / d ' (30 * 15) / 5

 Console.WriteLine("Value of (a + b) * c / d is : {0}", e)

 e = ((a + b) * c) / d ' (30 * 15) / 5

 VB.NET

 66

 Console.WriteLine("Value of ((a + b) * c) / d is : {0}", e)

 e = (a + b) * (c / d) ' (30) * (15/5)

 Console.WriteLine("Value of (a + b) * (c / d) is : {0}", e)

 e = a + (b * c) / d ' 20 + (150/5)

 Console.WriteLine("Value of a + (b * c) / d is : {0}", e)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Value of (a + b) * c / d is : 90

Value of ((a + b) * c) / d is : 90

Value of (a + b) * (c / d) is : 90

Value of a + (b * c) / d is : 50

 VB.NET

 67

Decision making structures require that the programmer specify one or more

conditions to be evaluated or tested by the program, along with a statement or

statements to be executed if the condition is determined to be true, and optionally,

other statements to be executed if the condition is determined to be false.

Following is the general form of a typical decision making structure found in most

of the programming languages:

VB.Net provides the following types of decision making statements. Click the

following links to check their details.

Statement Description

If ... Then statement An If...Then statement consists of a

boolean expression followed by one or

more statements.

If...Then...Else statement An If...Then statement can be followed

by an optional Else statement, which

executes when the boolean expression is

false.

12. Decision Making

 VB.NET

 68

nested If statements You can use one If or Else if statement

inside another If or Else if statement(s).

Select Case statement A Select Case statement allows a variable

to be tested for equality against a list of

values.

nested Select Case statements You can use one select case statement

inside another select case statement(s).

If...Then Statement

It is the simplest form of control statement, frequently used in decision making

and changing the control flow of the program execution. Syntax for if-then

statement is:

If condition Then

[Statement(s)]

End If

Where, condition is a Boolean or relational condition and Statement(s) is a simple

or compound statement. Example of an If-Then statement is:

If (a <= 20) Then

 c= c+1

End If

If the condition evaluates to true, then the block of code inside the If statement

will be executed. If condition evaluates to false, then the first set of code after the

end of the If statement (after the closing End If) will be executed.

 VB.NET

 69

Flow Diagram

Example

Module decisions

 Sub Main()

 'local variable definition

 Dim a As Integer = 10

 ' check the boolean condition using if statement

 If (a < 20) Then

 ' if condition is true then print the following

 Console.WriteLine("a is less than 20")

 End If

 Console.WriteLine("value of a is : {0}", a)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

a is less than 20

value of a is : 10

 VB.NET

 70

If...Then...Else Statement

An If statement can be followed by an optional Else statement, which executes

when the Boolean expression is false.

Syntax

The syntax of an If...Then... Else statement in VB.Net is as follows:

If(boolean_expression)Then

 'statement(s) will execute if the Boolean expression is true

Else

 'statement(s) will execute if the Boolean expression is false

End If

If the Boolean expression evaluates to true, then the if block of code will be

executed, otherwise else block of code will be executed.

Flow Diagram

Example

Module decisions

 Sub Main()

 'local variable definition '

 Dim a As Integer = 100

 VB.NET

 71

 ' check the boolean condition using if statement

 If (a < 20) Then

 ' if condition is true then print the following

 Console.WriteLine("a is less than 20")

 Else

 ' if condition is false then print the following

 Console.WriteLine("a is not less than 20")

 End If

 Console.WriteLine("value of a is : {0}", a)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

a is not less than 20

value of a is : 100

The If...Else If...Else Statement

An If statement can be followed by an optional Else if...Else statement, which is

very useful to test various conditions using single If...Else If statement.

When using If... Else If... Else statements, there are few points to keep in mind.

 An If can have zero or one Else's and it must come after an Else If's.

 An If can have zero to many Else If's and they must come before the Else.

 Once an Else if succeeds, none of the remaining Else If's or Else's will be

tested.

Syntax

The syntax of an if...else if...else statement in VB.Net is as follows:

If(boolean_expression 1)Then

 ' Executes when the boolean expression 1 is true

ElseIf(boolean_expression 2)Then

 ' Executes when the boolean expression 2 is true

ElseIf(boolean_expression 3)Then

 VB.NET

 72

 ' Executes when the boolean expression 3 is true

Else

 ' executes when the none of the above condition is true

End If

Example

Module decisions

 Sub Main()

 'local variable definition '

 Dim a As Integer = 100

 ' check the boolean condition '

 If (a = 10) Then

 ' if condition is true then print the following '

 Console.WriteLine("Value of a is 10") '

 ElseIf (a = 20) Then

 'if else if condition is true '

 Console.WriteLine("Value of a is 20") '

 ElseIf (a = 30) Then

 'if else if condition is true

 Console.WriteLine("Value of a is 30")

 Else

 'if none of the conditions is true

 Console.WriteLine("None of the values is matching")

 End If

 Console.WriteLine("Exact value of a is: {0}", a)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

None of the values is matching

Exact value of a is: 100

 VB.NET

 73

Nested If Statements

It is always legal in VB.Net to nest If-Then-Else statements, which means you can

use one If or ElseIf statement inside another If ElseIf statement(s).

Syntax

The syntax for a nested If statement is as follows:

If(boolean_expression 1)Then

 'Executes when the boolean expression 1 is true

 If(boolean_expression 2)Then

 'Executes when the boolean expression 2 is true

 End If

End If

You can nest ElseIf...Else in the similar way as you have nested If statement.

Example

Module decisions

 Sub Main()

 'local variable definition

 Dim a As Integer = 100

 Dim b As Integer = 200

 ' check the boolean condition

 If (a = 100) Then

 ' if condition is true then check the following

 If (b = 200) Then

 ' if condition is true then print the following

 Console.WriteLine("Value of a is 100 and b is 200")

 End If

 End If

 Console.WriteLine("Exact value of a is : {0}", a)

 Console.WriteLine("Exact value of b is : {0}", b)

 Console.ReadLine()

 End Sub

End Module

 VB.NET

 74

When the above code is compiled and executed, it produces the following result:

Value of a is 100 and b is 200

Exact value of a is : 100

Exact value of b is : 200

Select Case Statement

A Select Case statement allows a variable to be tested for equality against a list

of values. Each value is called a case, and the variable being switched on is

checked for each select case.

Syntax

The syntax for a Select Case statement in VB.Net is as follows:

Select [Case] expression

 [Case expressionlist

 [statements]]

 [Case Else

 [elsestatements]]

End Select

Where,

 expression: is an expression that must evaluate to any of the elementary

data type in VB.Net, i.e., Boolean, Byte, Char, Date, Double, Decimal,

Integer, Long, Object, SByte, Short, Single, String, UInteger, ULong, and

UShort.

 expressionlist: List of expression clauses representing match values for

expression. Multiple expression clauses are separated by commas.

 statements: statements following Case that run if the select expression

matches any clause in expressionlist.

 elsestatements: statements following Case Else that run if the select

expression does not match any clause in the expressionlist of any of the

Case statements.

 VB.NET

 75

Flow Diagram

Example

Module decisions

 Sub Main()

 'local variable definition

 Dim grade As Char

 grade = "B"

 Select grade

 Case "A"

 Console.WriteLine("Excellent!")

 Case "B", "C"

 Console.WriteLine("Well done")

 Case "D"

 Console.WriteLine("You passed")

 Case "F"

 Console.WriteLine("Better try again")

 Case Else

 VB.NET

 76

 Console.WriteLine("Invalid grade")

 End Select

 Console.WriteLine("Your grade is {0}", grade)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Well done

Your grade is B

Nested Select Case Statement

It is possible to have a select statement as part of the statement sequence of an

outer select statement. Even if the case constants of the inner and outer select

contain common values, no conflicts will arise.

Example

Module decisions

 Sub Main()

 'local variable definition

 Dim a As Integer = 100

 Dim b As Integer = 200

 Select a

 Case 100

 Console.WriteLine("This is part of outer case ")

 Select Case b

 Case 200

 Console.WriteLine("This is part of inner case ")

 End Select

 End Select

 Console.WriteLine("Exact value of a is : {0}", a)

 Console.WriteLine("Exact value of b is : {0}", b)

 Console.ReadLine()

 End Sub

 VB.NET

 77

End Module

When the above code is compiled and executed, it produces the following result:

This is part of outer case

This is part of inner case

Exact value of a is : 100

Exact value of b is : 200

 VB.NET

 78

There may be a situation when you need to execute a block of code several

number of times. In general, statements are executed sequentially: The first

statement in a function is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more

complicated execution paths.

A loop statement allows us to execute a statement or group of statements multiple

times and following is the general form of a loop statement in most of the

programming languages:

VB.Net provides following types of loops to handle looping requirements. Click the

following links to check their details.

Loop Type Description

Do Loop It repeats the enclosed block of statements while a

Boolean condition is True or until the condition becomes

True. It could be terminated at any time with the Exit

Do statement.

13. Loops

 VB.NET

 79

For...Next It repeats a group of statements a specified number of

times and a loop index counts the number of loop

iterations as the loop executes.

For Each...Next It repeats a group of statements for each element in a

collection. This loop is used for accessing and

manipulating all elements in an array or a VB.Net

collection.

While... End While It executes a series of statements as long as a given

condition is True.

With... End With It is not exactly a looping construct. It executes a series

of statements that repeatedly refer to a single object or

structure.

Nested loops You can use one or more loops inside any another

While, For or Do loop.

Do Loop

It repeats the enclosed block of statements while a Boolean condition is True or

until the condition becomes True. It could be terminated at any time with the Exit

Do statement.

The syntax for this loop construct is:

Do { While | Until } condition

 [statements]

 [Continue Do]

 [statements]

 [Exit Do]

 [statements]

Loop

-or-

Do

 [statements]

 [Continue Do]

 [statements]

 VB.NET

 80

 [Exit Do]

 [statements]

Loop { While | Until } condition

Flow Diagram

Example

Module loops

 Sub Main()

 ' local variable definition

 Dim a As Integer = 10

 'do loop execution

 Do

 Console.WriteLine("value of a: {0}", a)

 a = a + 1

 Loop While (a < 20)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

 VB.NET

 81

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

The program would behave in same way, if you use an Until statement, instead of

While:

Module loops

 Sub Main()

 ' local variable definition

 Dim a As Integer = 10

 'do loop execution

 Do

 Console.WriteLine("value of a: {0}", a)

 a = a + 1

 Loop Until (a = 20)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

 VB.NET

 82

value of a: 17

value of a: 18

value of a: 19

For...Next Loop

It repeats a group of statements a specified number of times and a loop index

counts the number of loop iterations as the loop executes.

The syntax for this loop construct is:

For counter [As datatype] = start To end [Step step]

 [statements]

 [Continue For]

 [statements]

 [Exit For]

 [statements]

Next [counter]

Flow Diagram

 VB.NET

 83

Example

Module loops

 Sub Main()

 Dim a As Byte

 ' for loop execution

 For a = 10 To 20

 Console.WriteLine("value of a: {0}", a)

 Next

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

value of a: 10

 VB.NET

 84

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

value of a: 20

If you want to use a step size of 2, for example, you need to display only even

numbers, between 10 and 20:

Module loops

 Sub Main()

 Dim a As Byte

 ' for loop execution

 For a = 10 To 20 Step 2

 Console.WriteLine("value of a: {0}", a)

 Next

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 12

value of a: 14

value of a: 16

value of a: 18

value of a: 20

Each...Next Loop

It repeats a group of statements for each element in a collection. This loop is used

for accessing and manipulating all elements in an array or a VB.Net collection.

 VB.NET

 85

The syntax for this loop construct is:

For Each element [As datatype] In group

 [statements]

 [Continue For]

 [statements]

 [Exit For]

 [statements]

Next [element]

Example

Module loops

 Sub Main()

 Dim anArray() As Integer = {1, 3, 5, 7, 9}

 Dim arrayItem As Integer

 'displaying the values

 For Each arrayItem In anArray

 Console.WriteLine(arrayItem)

 Next

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

1

3

5

7

9

While... End While Loop

It executes a series of statements as long as a given condition is True.

The syntax for this loop construct is:

While condition

 VB.NET

 86

 [statements]

 [Continue While]

 [statements]

 [Exit While]

 [statements]

End While

Here, statement(s) may be a single statement or a block of statements. The

condition may be any expression, and true is logical true. The loop iterates while

the condition is true.

When the condition becomes false, program control passes to the line immediately

following the loop.

Flow Diagram

 VB.NET

 87

Here, key point of the While loop is that the loop might not ever run. When the

condition is tested and the result is false, the loop body will be skipped and the

first statement after the while loop will be executed.

Example

Module loops

 Sub Main()

 Dim a As Integer = 10

 ' while loop execution '

 While a < 20

 Console.WriteLine("value of a: {0}", a)

 a = a + 1

 End While

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

 VB.NET

 88

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

With... End With Statement

It is not exactly a looping construct. It executes a series of statements that

repeatedly refers to a single object or structure.

The syntax for this loop construct is:

With object

 [statements]

End With

Example

Module loops

 Public Class Book

 Public Property Name As String

 Public Property Author As String

 Public Property Subject As String

 End Class

 Sub Main()

 Dim aBook As New Book

 With aBook

 .Name = "VB.Net Programming"

 .Author = "Zara Ali"

 .Subject = "Information Technology"

 End With

 VB.NET

 89

 With aBook

 Console.WriteLine(.Name)

 Console.WriteLine(.Author)

 Console.WriteLine(.Subject)

 End With

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

VB.Net Programming

Zara Ali

Information Technology

Nested Loops

VB.Net allows using one loop inside another loop. Following section shows few

examples to illustrate the concept.

Syntax

The syntax for a nested For loop statement in VB.Net is as follows:

For counter1 [As datatype1] = start1 To end1 [Step step1]

 For counter2 [As datatype2] = start2 To end2 [Step step2]

 ...

 Next [counter2]

Next [counter 1]

The syntax for a nested While loop statement in VB.Net is as follows:

While condition1

 While condition2

 ...

 End While

End While

The syntax for a nested Do...While loop statement in VB.Net is as follows:

 VB.NET

 90

Do { While | Until } condition1

 Do { While | Until } condition2

 ...

 Loop

Loop

A final note on loop nesting is that you can put any type of loop inside of any other

type of loop. For example, a for loop can be inside a while loop or vice versa.

Example

The following program uses a nested for loop to find the prime numbers from 2 to

100:

Module loops

 Sub Main()

 ' local variable definition

 Dim i, j As Integer

 For i = 2 To 100

 For j = 2 To i

 ' if factor found, not prime

 If ((i Mod j) = 0) Then

 Exit For

 End If

 Next j

 If (j > (i \ j)) Then

 Console.WriteLine("{0} is prime", i)

 End If

 Next i

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

2 is prime

3 is prime

5 is prime

 VB.NET

 91

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

23 is prime

29 is prime

31 is prime

37 is prime

41 is prime

43 is prime

47 is prime

53 is prime

59 is prime

61 is prime

67 is prime

71 is prime

73 is prime

79 is prime

83 is prime

89 is prime

97 is prime

Loop Control Statements

Loop control statements change execution from its normal sequence. When

execution leaves a scope, all automatic objects that were created in that scope

are destroyed.

VB.Net provides the following control statements. Click the following links to check

their details.

Control Statement Description

 VB.NET

 92

Exit statement Terminates the loop or select case statement and

transfers execution to the statement immediately

following the loop or select case.

Continue statement Causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

GoTo statement Transfers control to the labeled statement. Though it is

not advised to use GoTo statement in your program.

Exit Statement

The Exit statement transfers the control from a procedure or block immediately to

the statement following the procedure call or the block definition. It terminates

the loop, procedure, try block or the select block from where it is called.

If you are using nested loops (i.e., one loop inside another loop), the Exit

statement will stop the execution of the innermost loop and start executing the

next line of code after the block.

Syntax

The syntax for the Exit statement is:

Exit { Do | For | Function | Property | Select | Sub | Try | While }

Flow Diagram

 VB.NET

 93

Example

Module loops

 Sub Main()

 ' local variable definition

 Dim a As Integer = 10

 ' while loop execution '

 While (a < 20)

 Console.WriteLine("value of a: {0}", a)

 a = a + 1

 If (a > 15) Then

 'terminate the loop using exit statement

 Exit While

 End If

 End While

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

 VB.NET

 94

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

Continue Statement

The Continue statement causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating. It works somewhat like the

Exit statement. Instead of forcing termination, it forces the next iteration of the

loop to take place, skipping any code in between.

For the For...Next loop, Continue statement causes the conditional test and

increment portions of the loop to execute. For the While and Do...While loops,

continue statement causes the program control to pass to the conditional tests.

Syntax

The syntax for a Continue statement is as follows:

Continue { Do | For | While }

Flow Diagram

Example

 VB.NET

 95

Module loops

 Sub Main()

 ' local variable definition

 Dim a As Integer = 10

 Do

 If (a = 15) Then

 ' skip the iteration '

 a = a + 1

 Continue Do

 End If

 Console.WriteLine("value of a: {0}", a)

 a = a + 1

 Loop While (a < 20)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

GoTo Statement

The GoTo statement transfers control unconditionally to a specified line in a

procedure.

The syntax for the GoTo statement is:

GoTo label

 VB.NET

 96

Flow Diagram

Example

Module loops

 Sub Main()

 ' local variable definition

 Dim a As Integer = 10

Line1:

 Do

 If (a = 15) Then

 ' skip the iteration '

 a = a + 1

 GoTo Line1

 End If

 Console.WriteLine("value of a: {0}", a)

 a = a + 1

 Loop While (a < 20)

 Console.ReadLine()

 End Sub

End Module

 VB.NET

 97

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

 VB.NET

 98

In VB.Net, you can use strings as array of characters, however, more common

practice is to use the String keyword to declare a string variable. The string

keyword is an alias for the System.String class.

Creating a String Objec

You can create string object using one of the following methods:

 By assigning a string literal to a String variable

 By using a String class constructor

 By using the string concatenation operator (+)

 By retrieving a property or calling a method that returns a string

 By calling a formatting method to convert a value or object to its string

representation

The following example demonstrates this:

Module strings

 Sub Main()

 Dim fname, lname, fullname, greetings As String

 fname = "Rowan"

 lname = "Atkinson"

 fullname = fname + " " + lname

 Console.WriteLine("Full Name: {0}", fullname)

 'by using string constructor

 Dim letters As Char() = {"H", "e", "l", "l", "o"}

 greetings = New String(letters)

 Console.WriteLine("Greetings: {0}", greetings)

 'methods returning String

 Dim sarray() As String = {"Hello", "From", "Tutorials", "Point"}

 Dim message As String = String.Join(" ", sarray)

14. Strings

 VB.NET

 99

 Console.WriteLine("Message: {0}", message)

 'formatting method to convert a value

 Dim waiting As DateTime = New DateTime(2012, 12, 12, 17, 58, 1)

 Dim chat As String = String.Format("Message sent at {0:t} on

{0:D}", waiting)

 Console.WriteLine("Message: {0}", chat)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Full Name: Rowan Atkinson

Greetings: Hello

Message: Hello From Tutorials Point

Message: Message sent at 5:58 PM on Wednesday, December 12, 2012

Properties of the String Class

The String class has the following two properties:

S.N Property Name & Description

1 Chars

Gets the Char object at a specified position in the current String object.

2 Length

Gets the number of characters in the current String object.

Methods of the String Class

The String class has numerous methods that help you in working with the string

objects. The following table provides some of the most commonly used methods:

 VB.NET

 100

S.N Method Name & Description

1 Public Shared Function Compare (strA As String, strB As String)

As Integer

Compares two specified string objects and returns an integer that

indicates their relative position in the sort order.

2 Public Shared Function Compare (strA As String, strB As String,

ignoreCase As Boolean) As Integer

Compares two specified string objects and returns an integer that

indicates their relative position in the sort order. However, it ignores case

if the Boolean parameter is true.

3 Public Shared Function Concat (str0 As String, str1 As String) As

String

Concatenates two string objects.

4 Public Shared Function Concat (str0 As String, str1 As String, str2

As String) As String

Concatenates three string objects.

5 Public Shared Function Concat (str0 As String, str1 As String, str2

As String, str3 As String) As String

Concatenates four string objects.

6 Public Function Contains (value As String) As Boolean

Returns a value indicating whether the specified string object occurs

within this string.

7 Public Shared Function Copy (str As String) As String

Creates a new String object with the same value as the specified string.

8 pPublic Sub CopyTo (sourceIndex As Integer, destination As

Char(), destinationIndex As Integer, count As Integer)

 VB.NET

 101

Copies a specified number of characters from a specified position of the

string object to a specified position in an array of Unicode characters.

9 Public Function EndsWith (value As String) As Boolean

Determines whether the end of the string object matches the specified

string.

10 Public Function Equals (value As String) As Boolean

Determines whether the current string object and the specified string

object have the same value.

11 Public Shared Function Equals (a As String, b As String) As

Boolean

Determines whether two specified string objects have the same value.

12 Public Shared Function Format (format As String, arg0 As Object)

As String

Replaces one or more format items in a specified string with the string

representation of a specified object.

13 Public Function IndexOf (value As Char) As Integer

Returns the zero-based index of the first occurrence of the specified

Unicode character in the current string.

14 Public Function IndexOf (value As String) As Integer

Returns the zero-based index of the first occurrence of the specified string

in this instance.

15 Public Function IndexOf (value As Char, startIndex As Integer)

As Integer

Returns the zero-based index of the first occurrence of the specified

Unicode character in this string, starting search at the specified character

position.

 VB.NET

 102

16 Public Function IndexOf (value As String, startIndex As Integer)

As Integer

Returns the zero-based index of the first occurrence of the specified string

in this instance, starting search at the specified character position.

17 Public Function IndexOfAny (anyOf As Char()) As Integer

Returns the zero-based index of the first occurrence in this instance of

any character in a specified array of Unicode characters.

18 Public Function IndexOfAny (anyOf As Char(), startIndex As

Integer) As Integer

Returns the zero-based index of the first occurrence in this instance of

any character in a specified array of Unicode characters, starting search

at the specified character position.

19 Public Function Insert (startIndex As Integer, value As String) As

String

Returns a new string in which a specified string is inserted at a specified

index position in the current string object.

20 Public Shared Function IsNullOrEmpty (value As String) As

Boolean

Indicates whether the specified string is null or an Empty string.

21 Public Shared Function Join (separator As String, ParamArray

value As String()) As String

Concatenates all the elements of a string array, using the specified

separator between each element.

22 Public Shared Function Join (separator As String, value As

String(), startIndex As Integer, count As Integer) As String

Concatenates the specified elements of a string array, using the specified

separator between each element.

 VB.NET

 103

23 Public Function LastIndexOf (value As Char) As Integer

Returns the zero-based index position of the last occurrence of the

specified Unicode character within the current string object.

24 Public Function LastIndexOf (value As String) As Integer

Returns the zero-based index position of the last occurrence of a specified

string within the current string object.

25 Public Function Remove (startIndex As Integer) As String

Removes all the characters in the current instance, beginning at a

specified position and continuing through the last position, and returns

the string.

26 Public Function Remove (startIndex As Integer, count As

Integer) As String

Removes the specified number of characters in the current string

beginning at a specified position and returns the string.

27 Public Function Replace (oldChar As Char, newChar As Char) As

String

Replaces all occurrences of a specified Unicode character in the current

string object with the specified Unicode character and returns the new

string.

28 Public Function Replace (oldValue As String, newValue As String)

As String

Replaces all occurrences of a specified string in the current string object

with the specified string and returns the new string.

29 Public Function Split (ParamArray separator As Char()) As

String()

Returns a string array that contains the substrings in the current string

object, delimited by elements of a specified Unicode character array.

 VB.NET

 104

30 Public Function Split (separator As Char(), count As Integer) As

String()

Returns a string array that contains the substrings in the current string

object, delimited by elements of a specified Unicode character array. The

int parameter specifies the maximum number of substrings to return.

31 Public Function StartsWith (value As String) As Boolean

Determines whether the beginning of this string instance matches the

specified string.

32 Public Function ToCharArray As Char()

Returns a Unicode character array with all the characters in the current

string object.

33 Public Function ToCharArray (startIndex As Integer, length As

Integer) As Char()

Returns a Unicode character array with all the characters in the current

string object, starting from the specified index and up to the specified

length.

34 Public Function ToLower As String

Returns a copy of this string converted to lowercase.

35 Public Function ToUpper As String

Returns a copy of this string converted to uppercase.

36 Public Function Trim As String

Removes all leading and trailing white-space characters from the current

String object.

The above list of methods is not exhaustive, please visit MSDN library for the

complete list of methods and String class constructors.

 VB.NET

 105

Examples

The following example demonstrates some of the methods mentioned above:

Comparing Strings

#include <include.h>

Module strings

 Sub Main()

 Dim str1, str2 As String

 str1 = "This is test"

 str2 = "This is text"

 If (String.Compare(str1, str2) = 0) Then

 Console.WriteLine(str1 + " and " + str2 +

 " are equal.")

 Else

 Console.WriteLine(str1 + " and " + str2 +

 " are not equal.")

 End If

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

This is test and This is text are not equal.

String Contains String

Module strings

 Sub Main()

 Dim str1 As String

 str1 = "This is test"

 If (str1.Contains("test")) Then

 Console.WriteLine("The sequence 'test' was found.")

 End If

 Console.ReadLine()

 End Sub

 VB.NET

 106

End Module

When the above code is compiled and executed, it produces the following result:

The sequence 'test' was found.

Getting a Substring

Module strings

 Sub Main()

 Dim str As String

 str = "Last night I dreamt of San Pedro"

 Console.WriteLine(str)

 Dim substr As String = str.Substring(23)

 Console.WriteLine(substr)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Last night I dreamt of San Pedro

San Pedro.

Joining Strings

Module strings

 Sub Main()

 Dim strarray As String() = {"Down the way where the nights are

gay",

 "And the sun shines daily on the mountain

top",

 "I took a trip on a sailing ship",

 "And when I reached Jamaica",

 "I made a stop"}

 Dim str As String = String.Join(vbCrLf, strarray)

 Console.WriteLine(str)

 Console.ReadLine()

 VB.NET

 107

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Down the way where the nights are gay

And the sun shines daily on the mountain top

I took a trip on a sailing ship

And when I reached Jamaica

I made a stop

 VB.NET

 108

Most of the softwares you write need implementing some form of date functions

returning current date and time. Dates are so much part of everyday life that it

becomes easy to work with them without thinking. VB.Net also provides powerful

tools for date arithmetic that makes manipulating dates easy.

The Date data type contains date values, time values, or date and time values.

The default value of Date is 0:00:00 (midnight) on January 1, 0001. The

equivalent .NET data type is System.DateTime.

The DateTime structure represents an instant in time, typically expressed as a

date and time of day

'Declaration

<SerializableAttribute> _

Public Structure DateTime _

 Implements IComparable, IFormattable, IConvertible, ISerializable,

 IComparable(Of DateTime), IEquatable(Of DateTime)

You can also get the current date and time from the DateAndTime class.

The DateAndTime module contains the procedures and properties used in date

and time operations.

'Declaration

<StandardModuleAttribute> _

Public NotInheritable Class DateAndTime

Note:

Both the DateTime structure and the DateAndTime module contain properties

like Now and Today, so often beginners find it confusing. The DateAndTime

class belongs to the Microsoft.VisualBasic namespace and the DateTime

structure belongs to the System namespace.

Therefore, using the later would help you in porting your code to another .Net

language like C#. However, the DateAndTime class/module contains all the

legacy date functions available in Visual Basic.

15. Date & Time

 VB.NET

 109

Properties and Methods of the DateTime Structure

The following table lists some of the commonly used properties of the DateTime

Structure:

S.N Property Description

1 Date Gets the date component of this instance.

2 Day
Gets the day of the month represented by this

instance.

3 DayOfWeek
Gets the day of the week represented by this

instance.

4 DayOfYear Gets the day of the year represented by this instance.

5 Hour
Gets the hour component of the date represented by

this instance.

6 Kind

Gets a value that indicates whether the time

represented by this instance is based on local time,

Coordinated Universal Time (UTC), or neither.

7 Millisecond
Gets the milliseconds component of the date

represented by this instance.

8 Minute
Gets the minute component of the date represented

by this instance.

9 Month
Gets the month component of the date represented

by this instance.

10 Now

Gets a DateTime object that is set to the current

date and time on this computer, expressed as the

local time.

 VB.NET

 110

11 Second
Gets the seconds component of the date represented

by this instance.

12 Ticks
Gets the number of ticks that represent the date and

time of this instance.

13 TimeOfDay Gets the time of day for this instance.

14 Today Gets the current date.

15 UtcNow

Gets a DateTime object that is set to the current

date and time on this computer, expressed as the

Coordinated Universal Time (UTC).

16 Year
Gets the year component of the date represented by

this instance.

The following table lists some of the commonly used methods of

the DateTime structure:

S.N Method Name & Description

1 Public Function Add (value As TimeSpan) As DateTime

Returns a new DateTime that adds the value of the specified TimeSpan

to the value of this instance.

2 Public Function AddDays (value As Double) As DateTime

Returns a new DateTime that adds the specified number of days to the

value of this instance.

3 Public Function AddHours (value As Double) As DateTime

Returns a new DateTime that adds the specified number of hours to the

value of this instance.

 VB.NET

 111

4 Public Function AddMinutes (value As Double) As DateTime

Returns a new DateTime that adds the specified number of minutes to

the value of this instance.

5 Public Function AddMonths (months As Integer) As DateTime

Returns a new DateTime that adds the specified number of months to the

value of this instance.

6 Public Function AddSeconds (value As Double) As DateTime

Returns a new DateTime that adds the specified number of seconds to

the value of this instance.

7 Public Function AddYears (value As Integer) As DateTime

Returns a new DateTime that adds the specified number of years to the

value of this instance.

8 Public Shared Function Compare (t1 As DateTime,t2 As DateTime)

As Integer

Compares two instances of DateTime and returns an integer that

indicates whether the first instance is earlier than, the same as, or later

than the second instance.

9 Public Function CompareTo (value As DateTime) As Integer

Compares the value of this instance to a specified DateTime value and

returns an integer that indicates whether this instance is earlier than, the

same as, or later than the specified DateTime value.

10 Public Function Equals (value As DateTime) As Boolean

Returns a value indicating whether the value of this instance is equal to

the value of the specified DateTime instance.

11 Public Shared Function Equals (t1 As DateTime, t2 As DateTime)

As Boolean

 VB.NET

 112

Returns a value indicating whether two DateTime instances have the

same date and time value.

12 Public Overrides Function ToString As String

Converts the value of the current DateTime object to its equivalent string

representation.

The above list of methods is not exhaustive, please visit Microsoft documentation for

the complete list of methods and properties of the DateTime structure.

Creating a DateTime Object

You can create a DateTime object in one of the following ways:

 By calling a DateTime constructor from any of the overloaded DateTime

constructors.

 By assigning the DateTime object a date and time value returned by a

property or method.

 By parsing the string representation of a date and time value.

 By calling the DateTime structure's implicit default constructor.

The following example demonstrates this:

Module Module1

 Sub Main()

 'DateTime constructor: parameters year, month, day, hour, min, sec

 Dim date1 As New Date(2012, 12, 16, 12, 0, 0)

 'initializes a new DateTime value

 Dim date2 As Date = #12/16/2012 12:00:52 AM#

 'using properties

 Dim date3 As Date = Date.Now

 Dim date4 As Date = Date.UtcNow

 Dim date5 As Date = Date.Today

 Console.WriteLine(date1)

 Console.WriteLine(date2)

 Console.WriteLine(date3)

http://msdn.microsoft.com/en-us/library/system.datetime.aspx

 VB.NET

 113

 Console.WriteLine(date4)

 Console.WriteLine(date5)

 Console.ReadKey()

 End Sub

End Module

When the above code was compiled and executed, it produces the following result:

12/16/2012 12:00:00 PM

12/16/2012 12:00:52 PM

12/12/2012 10:22:50 PM

12/12/2012 12:00:00 PM

Getting the Current Date and Time

The following programs demonstrate how to get the current date and time in

VB.Net:

Current Time

Module dateNtime

 Sub Main()

 Console.Write("Current Time: ")

 Console.WriteLine(Now.ToLongTimeString)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Current Time: 11 :05 :32 AM

Current Date

Module dateNtime

 Sub Main()

 Console.WriteLine("Current Date: ")

 Dim dt As Date = Today

 Console.WriteLine("Today is: {0}", dt)

 VB.NET

 114

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Today is: 12/11/2012 12:00:00 AM

Formatting Date

A Date literal should be enclosed within hash signs (# #), and specified in the

format M/d/yyyy, for example #12/16/2012#. Otherwise, your code may change

depending on the locale in which your application is running.

For example, you specified Date literal of #2/6/2012# for the date February 6,

2012. It is alright for the locale that uses mm/dd/yyyy format. However, in a locale

that uses dd/mm/yyyy format, your literal would compile to June 2, 2012. If a

locale uses another format say, yyyy/mm/dd, the literal would be invalid and

cause a compiler error.

To convert a Date literal to the format of your locale or to a custom format, use

the Format function of String class, specifying either a predefined or user-defined

date format.

The following example demonstrates this.

Module dateNtime

 Sub Main()

 Console.WriteLine("India Wins Freedom: ")

 Dim independenceDay As New Date(1947, 8, 15, 0, 0, 0)

 ' Use format specifiers to control the date display.

 Console.WriteLine(" Format 'd:' " & independenceDay.ToString("d"))

 Console.WriteLine(" Format 'D:' " & independenceDay.ToString("D"))

 Console.WriteLine(" Format 't:' " & independenceDay.ToString("t"))

 Console.WriteLine(" Format 'T:' " & independenceDay.ToString("T"))

 Console.WriteLine(" Format 'f:' " & independenceDay.ToString("f"))

 Console.WriteLine(" Format 'F:' " & independenceDay.ToString("F"))

 Console.WriteLine(" Format 'g:' " & independenceDay.ToString("g"))

 Console.WriteLine(" Format 'G:' " & independenceDay.ToString("G"))

 Console.WriteLine(" Format 'M:' " & independenceDay.ToString("M"))

 Console.WriteLine(" Format 'R:' " & independenceDay.ToString("R"))

 VB.NET

 115

 Console.WriteLine(" Format 'y:' " & independenceDay.ToString("y"))

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

India Wins Freedom:

Format 'd:' 8/15/1947

Format 'D:' Friday, August 15, 1947

Format 't:' 12:00 AM

Format 'T:' 12:00:00 AM

Format 'f:' Friday, August 15, 1947 12:00 AM

Format 'F:' Friday, August 15, 1947 12:00:00 AM

Format 'g:' 8/15/1947 12:00 AM

Format 'G:' 8/15/1947 12:00:00 AM

Format 'M:' 8/15/1947 August 15

Format 'R:' Fri, 15 August 1947 00:00:00 GMT

Format 'y:' August, 1947

Predefined Date/Time Formats

The following table identifies the predefined date and time format names. These

may be used by name as the style argument for the Format function:

Format Description

General Date, or G
Displays a date and/or time. For example,

1/12/2012 07:07:30 AM.

Long Date, Medium Date, or D

Displays a date according to your current

culture's long date format. For example,

Sunday, December 16, 2012.

Short Date, or d

Displays a date using your current culture's

short date format. For example,

12/12/2012.

 VB.NET

 116

Long Time, Medium Time, or T

Displays a time using your current culture's

long time format; typically includes hours,

minutes, seconds. For example, 01:07:30

AM.

Short Time or t
Displays a time using your current culture's

short time format. For example, 11:07 AM.

F

Displays the long date and short time

according to your current culture's format.

For example, Sunday, December 16, 2012

12:15 AM.

F

Displays the long date and long time

according to your current culture's format.

For example, Sunday, December 16, 2012

12:15:31 AM.

G

Displays the short date and short time

according to your current culture's format.

For example, 12/16/2012 12:15 AM.

M, m
Displays the month and the day of a date.

For example, December 16.

R, r
Formats the date according to the

RFC1123Pattern property.

S
Formats the date and time as a sortable

index. For example, 2012-12-16T12:07:31.

U

Formats the date and time as a GMT

sortable index. For example, 2012-12-16

12:15:31Z.

 VB.NET

 117

U

Formats the date and time with the long

date and long time as GMT. For example,

Sunday, December 16, 2012 6:07:31 PM.

Y, y
Formats the date as the year and month.

For example, December, 2012.

For other formats like user-defined formats, please consult Microsoft Documentation.

Properties and Methods of the DateAndTime Class

The following table lists some of the commonly used properties of

the DateAndTime Class:

S.N Property Description

1 Date Returns or sets a String value representing the

current date according to your system.

2 Now Returns a Date value containing the current date and

time according to your system.

3 TimeOfDay Returns or sets a Date value containing the current

time of day according to your system.

4 Timer Returns a Double value representing the number of

seconds elapsed since midnight.

5 TimeString Returns or sets a String value representing the

current time of day according to your system.

6 Today Gets the current date.

The following table lists some of the commonly used methods of

the DateAndTime class:

S.N Method Name & Description

http://msdn.microsoft.com/en-us/library/microsoft.visualbasic.strings.format.aspx

 VB.NET

 118

1 Public Shared Function DateAdd (Interval As DateInterval,

Number As Double, DateValue As DateTime) As DateTime

Returns a Date value containing a date and time value to which a

specified time interval has been added.

2 Public Shared Function DateAdd (Interval As String,Number As

Double,DateValue As Object) As DateTime

Returns a Date value containing a date and time value to which a

specified time interval has been added.

3 Public Shared Function DateDiff (Interval As DateInterval, Date1

As DateTime, Date2 As DateTime, DayOfWeek As

FirstDayOfWeek, WeekOfYear As FirstWeekOfYear) As Long

Returns a Long value specifying the number of time intervals between

two Date values.

4 Public Shared Function DatePart (Interval As DateInterval,

DateValue As DateTime, FirstDayOfWeekValue As

FirstDayOfWeek, FirstWeekOfYearValue As FirstWeekOfYear) As

Integer

Returns an Integer value containing the specified component of a given

Date value.

5 Public Shared Function Day (DateValue As DateTime) As Integer

Returns an Integer value from 1 through 31 representing the day of the

month.

6 Public Shared Function Hour (TimeValue As DateTime) As Integer

Returns an Integer value from 0 through 23 representing the hour of the

day.

7 Public Shared Function Minute (TimeValue As DateTime) As

Integer

Returns an Integer value from 0 through 59 representing the minute of

the hour.

 VB.NET

 119

8 Public Shared Function Month (DateValue As DateTime) As

Integer

Returns an Integer value from 1 through 12 representing the month of

the year.

9 Public Shared Function MonthName (Month As Integer,

Abbreviate As Boolean) As String

Returns a String value containing the name of the specified month.

10 Public Shared Function Second (TimeValue As DateTime) As

Integer

Returns an Integer value from 0 through 59 representing the second of

the minute.

11 Public Overridable Function ToString As String

Returns a string that represents the current object.

12 Public Shared Function Weekday (DateValue As DateTime,

DayOfWeek As FirstDayOfWeek) As Integer

Returns an Integer value containing a number representing the day of

the week.

13 Public Shared Function WeekdayName (Weekday As Integer,

Abbreviate As Boolean, FirstDayOfWeekValue As

FirstDayOfWeek) As String

Returns a String value containing the name of the specified weekday.

14 Public Shared Function Year (DateValue As DateTime) As Integer

Returns an Integer value from 1 through 9999 representing the year.

The above list is not exhaustive. For complete list of properties and methods of

the DateAndTime class, please consult Microsoft Documentation.

The following program demonstrates some of these and methods:

http://msdn.microsoft.com/en-us/library/microsoft.visualbasic.dateandtime.aspx

 VB.NET

 120

Module Module1

 Sub Main()

 Dim birthday As Date

 Dim bday As Integer

 Dim month As Integer

 Dim monthname As String

 ' Assign a date using standard short format.

 birthday = #7/27/1998#

 bday = Microsoft.VisualBasic.DateAndTime.Day(birthday)

 month = Microsoft.VisualBasic.DateAndTime.Month(birthday)

 monthname = Microsoft.VisualBasic.DateAndTime.MonthName(month)

 Console.WriteLine(birthday)

 Console.WriteLine(bday)

 Console.WriteLine(month)

 Console.WriteLine(monthname)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

7/27/1998 12:00:00 AM

27

7

July

 VB.NET

 121

An array stores a fixed-size sequential collection of elements of the same type. An

array is used to store a collection of data, but it is often more useful to think of an

array as a collection of variables of the same type.

All arrays consist of contiguous memory locations. The lowest address corresponds

to the first element and the highest address to the last element.

Creating Arrays in VB.Net

To declare an array in VB.Net, you use the Dim statement. For example,

Dim intData(30) ' an array of 31 elements

Dim strData(20) As String ' an array of 21 strings

Dim twoDarray(10, 20) As Integer 'a two dimensional array of integers

Dim ranges(10, 100) 'a two dimensional array

You can also initialize the array elements while declaring the array. For example,

Dim intData() As Integer = {12, 16, 20, 24, 28, 32}

Dim names() As String = {"Karthik", "Sandhya", _

"Shivangi", "Ashwitha", "Somnath"}

Dim miscData() As Object = {"Hello World", 12d, 16ui, "A"c}

The elements in an array can be stored and accessed by using the index of the

array. The following program demonstrates this:

Module arrayApl

 Sub Main()

 Dim n(10) As Integer ' n is an array of 11 integers '

 Dim i, j As Integer

 ' initialize elements of array n '

 For i = 0 To 10

16. Arrays

 VB.NET

 122

 n(i) = i + 100 ' set element at location i to i + 100

 Next i

 ' output each array element's value '

 For j = 0 To 10

 Console.WriteLine("Element({0}) = {1}", j, n(j))

 Next j

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Element(0) = 100

Element(1) = 101

Element(2) = 102

Element(3) = 103

Element(4) = 104

Element(5) = 105

Element(6) = 106

Element(7) = 107

Element(8) = 108

Element(9) = 109

Element(10) = 110

Dynamic Arrays

Dynamic arrays are arrays that can be dimensioned and re-dimensioned as par

the need of the program. You can declare a dynamic array using

the ReDim statement.

Syntax for ReDim statement:

ReDim [Preserve] arrayname(subscripts)

Where,

 The Preserve keyword helps to preserve the data in an existing array,

when you resize it.

 arrayname is the name of the array to re-dimension.

 VB.NET

 123

 subscripts specifies the new dimension.

Module arrayApl

 Sub Main()

 Dim marks() As Integer

 ReDim marks(2)

 marks(0) = 85

 marks(1) = 75

 marks(2) = 90

 ReDim Preserve marks(10)

 marks(3) = 80

 marks(4) = 76

 marks(5) = 92

 marks(6) = 99

 marks(7) = 79

 marks(8) = 75

 For i = 0 To 10

 Console.WriteLine(i & vbTab & marks(i))

 Next i

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

0 85

1 75

2 90

3 80

4 76

5 92

6 99

7 79

8 75

9 0

10 0

 VB.NET

 124

Multi-Dimensional Arrays

VB.Net allows multidimensional arrays. Multidimensional arrays are also called

rectangular arrays.

You can declare a 2-dimensional array of strings as:

Dim twoDStringArray(10, 20) As String

or, a 3-dimensional array of Integer variables:

Dim threeDIntArray(10, 10, 10) As Integer

The following program demonstrates creating and using a 2-dimensional array:

Module arrayApl

 Sub Main()

 ' an array with 5 rows and 2 columns

 Dim a(,) As Integer = {{0, 0}, {1, 2}, {2, 4}, {3, 6}, {4, 8}}

 Dim i, j As Integer

 ' output each array element's value '

 For i = 0 To 4

 For j = 0 To 1

 Console.WriteLine("a[{0},{1}] = {2}", i, j, a(i, j))

 Next j

 Next i

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

a[0,0]: 0

a[0,1]: 0

a[1,0]: 1

a[1,1]: 2

a[2,0]: 2

a[2,1]: 4

a[3,0]: 3

a[3,1]: 6

 VB.NET

 125

a[4,0]: 4

a[4,1]: 8

Jagged Array

A Jagged array is an array of arrays. The following code shows declaring a jagged

array named scores of Integers:

Dim scores As Integer()() = New Integer(5)(){}

The following example illustrates using a jagged array:

Module arrayApl

 Sub Main()

 'a jagged array of 5 array of integers

 Dim a As Integer()() = New Integer(4)() {}

 a(0) = New Integer() {0, 0}

 a(1) = New Integer() {1, 2}

 a(2) = New Integer() {2, 4}

 a(3) = New Integer() {3, 6}

 a(4) = New Integer() {4, 8}

 Dim i, j As Integer

 ' output each array element's value

 For i = 0 To 4

 For j = 0 To 1

 Console.WriteLine("a[{0},{1}] = {2}", i, j, a(i)(j))

 Next j

 Next i

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

a[0][0]: 0

a[0][1]: 0

a[1][0]: 1

a[1][1]: 2

 VB.NET

 126

a[2][0]: 2

a[2][1]: 4

a[3][0]: 3

a[3][1]: 6

a[4][0]: 4

a[4][1]: 8

The Array Class

The Array class is the base class for all the arrays in VB.Net. It is defined in the

System namespace. The Array class provides various properties and methods to

work with arrays.

Properties of the Array Class

The following table provides some of the most commonly used properties of

the Array class:

S.N Property Name & Description

1 IsFixedSize

Gets a value indicating whether the Array has a fixed size.

2 IsReadOnly

Gets a value indicating whether the Array is read-only.

3 Length

Gets a 32-bit integer that represents the total number of elements in all

the dimensions of the Array.

4 LongLength

Gets a 64-bit integer that represents the total number of elements in all

the dimensions of the Array.

5 Rank

Gets the rank (number of dimensions) of the Array.

 VB.NET

 127

Methods of the Array Class

The following table provides some of the most commonly used methods of

the Array class:

S.N Method Name & Description

1 Public Shared Sub Clear (array As Array, index As Integer, length

As Integer)

Sets a range of elements in the Array to zero, to false, or to null,

depending on the element type.

2 Public Shared Sub Copy (sourceArray As Array, destinationArray

As Array, length As Integer)

Copies a range of elements from an Array starting at the first element

and pastes them into another Array starting at the first element. The

length is specified as a 32-bit integer.

3 Public Sub CopyTo (array As Array, index As Integer)

Copies all the elements of the current one-dimensional Array to the

specified one-dimensional Array starting at the specified destination

Array index. The index is specified as a 32-bit integer.

4 Public Function GetLength (dimension As Integer) As Integer

Gets a 32-bit integer that represents the number of elements in the

specified dimension of the Array.

5 Public Function GetLongLength (dimension As Integer) As Long

Gets a 64-bit integer that represents the number of elements in the

specified dimension of the Array.

6 Public Function GetLowerBound (dimension As Integer) As

Integer

Gets the lower bound of the specified dimension in the Array.

7 Public Function GetType As Type

 VB.NET

 128

Gets the Type of the current instance (Inherited from Object).

8 Public Function GetUpperBound (dimension As Integer) As

Integer

Gets the upper bound of the specified dimension in the Array.

9 Public Function GetValue (index As Integer) As Object

Gets the value at the specified position in the one-dimensional Array.

The index is specified as a 32-bit integer.

10 Public Shared Function IndexOf (array As Array,value As Object)

As Integer

Searches for the specified object and returns the index of the first

occurrence within the entire one-dimensional Array.

11 Public Shared Sub Reverse (array As Array)

Reverses the sequence of the elements in the entire one-dimensional

Array.

12 Public Sub SetValue (value As Object, index As Integer)

Sets a value to the element at the specified position in the one-

dimensional Array. The index is specified as a 32-bit integer.

13 Public Shared Sub Sort (array As Array)

Sorts the elements in an entire one-dimensional Array using the

IComparable implementation of each element of the Array.

14 Public Overridable Function ToString As String

Returns a string that represents the current object (Inherited from

Object).

For a complete list of Array class properties and methods, please refer the

Microsoft documentation.

 VB.NET

 129

Example

The following program demonstrates use of some of the methods of the Array

class:

Module arrayApl

 Sub Main()

 Dim list As Integer() = {34, 72, 13, 44, 25, 30, 10}

 Dim temp As Integer() = list

 Dim i As Integer

 Console.Write("Original Array: ")

 For Each i In list

 Console.Write("{0} ", i)

 Next i

 Console.WriteLine()

 ' reverse the array

 Array.Reverse(temp)

 Console.Write("Reversed Array: ")

 For Each i In temp

 Console.Write("{0} ", i)

 Next i

 Console.WriteLine()

 'sort the array

 Array.Sort(list)

 Console.Write("Sorted Array: ")

 For Each i In list

 Console.Write("{0} ", i)

 Next i

 Console.WriteLine()

 Console.ReadKey()

 End Sub

End Module

 VB.NET

 130

When the above code is compiled and executed, it produces the following result:

Original Array: 34 72 13 44 25 30 10

Reversed Array: 10 30 25 44 13 72 34

Sorted Array: 10 13 25 30 34 44 72

 VB.NET

 131

Collection classes are specialized classes for data storage and retrieval. These

classes provide support for stacks, queues, lists, and hash tables. Most collection

classes implement the same interfaces.

Collection classes serve various purposes, such as allocating memory dynamically

to elements and accessing a list of items on the basis of an index, etc. These

classes create collections of objects of the Object class, which is the base class for

all data types in VB.Net.

Various Collection Classes and Their Usage

The following are the various commonly used classes of the System.Collection

namespace. Click the following links to check their details.

Class Description and Usage

ArrayList

It represents ordered collection of an object that can

be indexed individually.

It is basically an alternative to an array. However, unlike

array, you can add and remove items from a list at a

specified position using an index and the array resizes itself

automatically. It also allows dynamic memory allocation,

add, search and sort items in the list.

Hashtable

It uses a key to access the elements in the collection.

A hash table is used when you need to access elements by

using key, and you can identify a useful key value. Each item

in the hash table has a key/value pair. The key is used to

access the items in the collection.

SortedList
It uses a key as well as an index to access the items in a

list.

17. Collections

 VB.NET

 132

A sorted list is a combination of an array and a hash table.

It contains a list of items that can be accessed using a key

or an index. If you access items using an index, it is an

ArrayList, and if you access items using a key, it is a

Hashtable. The collection of items is always sorted by the

key value.

Stack

It represents a last-in, first out collection of object.

It is used when you need a last-in, first-out access of items.

When you add an item in the list, it is called pushing the

item, and when you remove it, it is called popping the item.

Queue

It represents a first-in, first out collection of object.

It is used when you need a first-in, first-out access of items.

When you add an item in the list, it is called enqueue, and

when you remove an item, it is called deque.

BitArray

It represents an array of the binary representation using

the values 1 and 0.

It is used when you need to store the bits but do not know

the number of bits in advance. You can access items from

the BitArray collection by using an integer index, which

starts from zero.

ArrayList

It represents an ordered collection of an object that can be indexed individually.

It is basically an alternative to an array. However, unlike array, you can add and

remove items from a list at a specified position using an index and the array

resizes itself automatically. It also allows dynamic memory allocation, adding,

searching and sorting items in the list.

Properties and Methods of the ArrayList Class

The following table lists some of the commonly used properties of

the ArrayList class:

 VB.NET

 133

Property Description

Capacity Gets or sets the number of elements that the ArrayList can

contain.

Count Gets the number of elements actually contained in the

ArrayList.

IsFixedSize Gets a value indicating whether the ArrayList has a fixed

size.

IsReadOnly Gets a value indicating whether the ArrayList is read-only.

Item Gets or sets the element at the specified index.

The following table lists some of the commonly used methods of

the ArrayList class:

S.N. Method Name & Purpose

1 Public Overridable Function Add (value As Object) As Integer

Adds an object to the end of the ArrayList.

2 Public Overridable Sub AddRange (c As ICollection)

Adds the elements of an ICollection to the end of the ArrayList.

3 Public Overridable Sub Clear

Removes all elements from the ArrayList.

4 Public Overridable Function Contains (item As Object) As

Boolean

Determines whether an element is in the ArrayList.

 VB.NET

 134

5 Public Overridable Function GetRange (index As Integer, count

As Integer) As ArrayList

Returns an ArrayList, which represents a subset of the elements in the

source ArrayList.

6 Public Overridable Function IndexOf (value As Object) As Integer

Returns the zero-based index of the first occurrence of a value in the

ArrayList or in a portion of it.

7 Public Overridable Sub Insert (index As Integer, value As Object)

Inserts an element into the ArrayList at the specified index.

8 Public Overridable Sub InsertRange (index As Integer, c As

ICollection)

Inserts the elements of a collection into the ArrayList at the specified

index.

9 Public Overridable Sub Remove (obj As Object)

Removes the first occurrence of a specific object from the ArrayList.

10 Public Overridable Sub RemoveAt (index As Integer)

Removes the element at the specified index of the ArrayList.

11 Public Overridable Sub RemoveRange (index As Integer, count

As Integer)

Removes a range of elements from the ArrayList.

12 Public Overridable Sub Reverse

Reverses the order of the elements in the ArrayList.

13 Public Overridable Sub SetRange (index As Integer, c As

ICollection)

Copies the elements of a collection over a range of elements in the

ArrayList.

 VB.NET

 135

14 Public Overridable Sub Sort

Sorts the elements in the ArrayList.

15 Public Overridable Sub TrimToSize

Sets the capacity to the actual number of elements in the ArrayList.

Example

The following example demonstrates the concept:

 Sub Main()

 Dim al As ArrayList = New ArrayList()

 Dim i As Integer

 Console.WriteLine("Adding some numbers:")

 al.Add(45)

 al.Add(78)

 al.Add(33)

 al.Add(56)

 al.Add(12)

 al.Add(23)

 al.Add(9)

 Console.WriteLine("Capacity: {0} ", al.Capacity)

 Console.WriteLine("Count: {0}", al.Count)

 Console.Write("Content: ")

 For Each i In al

 Console.Write("{0} ", i)

 Next i

 Console.WriteLine()

 Console.Write("Sorted Content: ")

 al.Sort()

 For Each i In al

 Console.Write("{0} ", i)

 Next i

 Console.WriteLine()

 Console.ReadKey()

 VB.NET

 136

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Adding some numbers:

Capacity: 8

Count: 7

Content: 45 78 33 56 12 23 9

Content: 9 12 23 33 45 56 78

Hashtable

The Hashtable class represents a collection of key-and-value pairs that are

organized based on the hash code of the key. It uses the key to access the

elements in the collection.

A hashtable is used when you need to access elements by using key, and you can

identify a useful key value. Each item in the hashtable has a key/value pair. The

key is used to access the items in the collection.

Properties and Methods of the Hashtable Class

The following table lists some of the commonly used properties of

the Hashtable class:

Property Description

Count Gets the number of key-and-value pairs contained in the

Hashtable.

IsFixedSize Gets a value indicating whether the Hashtable has a fixed

size.

IsReadOnly Gets a value indicating whether the Hashtable is read-only.

Item Gets or sets the value associated with the specified key.

Keys Gets an ICollection containing the keys in the Hashtable.

Values Gets an ICollection containing the values in the Hashtable.

 VB.NET

 137

The following table lists some of the commonly used methods of

the Hashtable class:

S.N Method Name & Purpose

1 Public Overridable Sub Add (key As Object, value As Object)

Adds an element with the specified key and value into the Hashtable.

2 Public Overridable Sub Clear

Removes all elements from the Hashtable.

3 Public Overridable Function ContainsKey (key As Object) As

Boolean

Determines whether the Hashtable contains a specific key.

4 Public Overridable Function ContainsValue (value As Object) As

Boolean

Determines whether the Hashtable contains a specific value.

5 Public Overridable Sub Remove (key As Object)

Removes the element with the specified key from the Hashtable.

Example

The following example demonstrates the concept:

Module collections

 Sub Main()

 Dim ht As Hashtable = New Hashtable()

 Dim k As String

 ht.Add("001", "Zara Ali")

 ht.Add("002", "Abida Rehman")

 ht.Add("003", "Joe Holzner")

 ht.Add("004", "Mausam Benazir Nur")

 ht.Add("005", "M. Amlan")

 ht.Add("006", "M. Arif")

 ht.Add("007", "Ritesh Saikia")

 If (ht.ContainsValue("Nuha Ali")) Then

 Console.WriteLine("This student name is already in the list")

 VB.NET

 138

 Else

 ht.Add("008", "Nuha Ali")

 End If

 ' Get a collection of the keys.

 Dim key As ICollection = ht.Keys

 For Each k In key

 Console.WriteLine(" {0} : {1}", k, ht(k))

 Next k

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

006: M. Arif

007: Ritesh Saikia

008: Nuha Ali

003: Joe Holzner

002: Abida Rehman

004: Mausam Banazir Nur

001: Zara Ali

005: M. Amlan

SortedList

The SortedList class represents a collection of key-and-value pairs that are sorted

by the keys and are accessible by key and by index.

A sorted list is a combination of an array and a hashtable. It contains a list of

items that can be accessed using a key or an index. If you access items using an

index, it is an ArrayList, and if you access items using a key, it is a Hashtable. The

collection of items is always sorted by the key value.

Properties and Methods of the SortedList Class

The following table lists some of the commonly used properties of

the SortedList class:

 VB.NET

 139

Property Description

Capacity Gets or sets the capacity of the SortedList.

Count Gets the number of elements contained in the SortedList.

IsFixedSize Gets a value indicating whether the SortedList has a fixed

size.

IsReadOnly Gets a value indicating whether the SortedList is read-only.

Item Gets and sets the value associated with a specific key in the

SortedList.

Keys Gets the keys in the SortedList.

Values Gets the values in the SortedList.

The following table lists some of the commonly used methods of

the SortedList class:

S.N Method Name & Purpose

1 Public Overridable Sub Add (key As Object, value As Object)

Adds an element with the specified key and value into the SortedList.

2 Public Overridable Sub Clear

Removes all elements from the SortedList.

3 Public Overridable Function ContainsKey (key As Object) As

Boolean

Determines whether the SortedList contains a specific key.

4 Public Overridable Function ContainsValue (value As Object) As

Boolean

 VB.NET

 140

Determines whether the SortedList contains a specific value.

5 Public Overridable Function GetByIndex (index As Integer) As

Object

Gets the value at the specified index of the SortedList.

6 Public Overridable Function GetKey (index As Integer) As Object

Gets the key at the specified index of the SortedList.

7 Public Overridable Function GetKeyList As IList

Gets the keys in the SortedList.

8 Public Overridable Function GetValueList As IList

Gets the values in the SortedList.

9 Public Overridable Function IndexOfKey (key As Object) As

Integer

Returns the zero-based index of the specified key in the SortedList.

10 Public Overridable Function IndexOfValue (value As Object) As

Integer

Returns the zero-based index of the first occurrence of the specified value

in the SortedList.

11 Public Overridable Sub Remove (key As Object)

Removes the element with the specified key from the SortedList.

12 Public Overridable Sub RemoveAt (index As Integer)

Removes the element at the specified index of SortedList.

13 Public Overridable Sub TrimToSize

Sets the capacity to the actual number of elements in the SortedList.

 VB.NET

 141

Example

The following example demonstrates the concept:

Module collections

 Sub Main()

 Dim sl As SortedList = New SortedList()

 sl.Add("001", "Zara Ali")

 sl.Add("002", "Abida Rehman")

 sl.Add("003", "Joe Holzner")

 sl.Add("004", "Mausam Benazir Nur")

 sl.Add("005", "M. Amlan")

 sl.Add("006", "M. Arif")

 sl.Add("007", "Ritesh Saikia")

 If (sl.ContainsValue("Nuha Ali")) Then

 Console.WriteLine("This student name is already in the list")

 Else

 sl.Add("008", "Nuha Ali")

 End If

 ' Get a collection of the keys.

 Dim key As ICollection = sl.Keys

 Dim k As String

 For Each k In key

 Console.WriteLine(" {0} : {1}", k, sl(k))

 Next k

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

001: Zara Ali

002: Abida Rehman

003: Joe Holzner

 VB.NET

 142

004: Mausam Banazir Nur

005: M. Amlan

006: M. Arif

007: Ritesh Saikia

008: Nuha Ali

Stack

It represents a last-in, first-out collection of objects. It is used when you need a

last-in, first-out access of items. When you add an item in the list, it is called

pushing the item, and when you remove it, it is called popping the item.

Properties and Methods of the Stack Class

The following table lists some of the commonly used properties of

the Stack class:

Property Description

Count Gets the number of elements contained in the Stack.

The following table lists some of the commonly used methods of the Stack class:

S.N Method Name & Purpose

1 Public Overridable Sub Clear

Removes all elements from the Stack.

2 Public Overridable Function Contains (obj As Object) As Boolean

Determines whether an element is in the Stack.

3 Public Overridable Function Peek As Object

Returns the object at the top of the Stack without removing it.

4 Public Overridable Function Pop As Object

Removes and returns the object at the top of the Stack.

 VB.NET

 143

5 Public Overridable Sub Push (obj As Object)

Inserts an object at the top of the Stack.

6 Public Overridable Function ToArray As Object()

Copies the Stack to a new array.

Example

The following example demonstrates use of Stack:

Module collections

 Sub Main()

 Dim st As Stack = New Stack()

 st.Push("A")

 st.Push("M")

 st.Push("G")

 st.Push("W")

 Console.WriteLine("Current stack: ")

 Dim c As Char

 For Each c In st

 Console.Write(c + " ")

 Next c

 Console.WriteLine()

 st.Push("V")

 st.Push("H")

 Console.WriteLine("The next poppable value in stack: {0}",

st.Peek())

 Console.WriteLine("Current stack: ")

 For Each c In st

 Console.Write(c + " ")

 Next c

 Console.WriteLine()

 Console.WriteLine("Removing values ")

 st.Pop()

 st.Pop()

 VB.NET

 144

 st.Pop()

 Console.WriteLine("Current stack: ")

 For Each c In st

 Console.Write(c + " ")

 Next c

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Current stack:

W G M A

The next poppable value in stack: H

Current stack:

H V W G M A

Removing values

Current stack:

G M A

Queue

It represents a first-in, first-out collection of object. It is used when you need a

first-in, first-out access of items. When you add an item in the list, it is

called enqueue, and when you remove an item, it is called deque

Properties and Methods of the Queue Class

The following table lists some of the commonly used properties of

the Queue class:

Property Description

Count Gets the number of elements contained in the Queue.

The following table lists some of the commonly used methods of the Queue class:

S.N Method Name & Purpose

 VB.NET

 145

1 Public Overridable Sub Clear

Removes all elements from the Queue.

2 Public Overridable Function Contains (obj As Object) As Boolean

Determines whether an element is in the Queue.

3 Public Overridable Function Dequeue As Object

Removes and returns the object at the beginning of the Queue.

4 Public Overridable Sub Enqueue (obj As Object)

Adds an object to the end of the Queue.

5 Public Overridable Function ToArray As Object()

Copies the Queue to a new array.

6 Public Overridable Sub TrimToSize

Sets the capacity to the actual number of elements in the Queue.

Example

The following example demonstrates use of Queue:

Module collections

 Sub Main()

 Dim q As Queue = New Queue()

 q.Enqueue("A")

 q.Enqueue("M")

 q.Enqueue("G")

 q.Enqueue("W")

 Console.WriteLine("Current queue: ")

 Dim c As Char

 For Each c In q

 Console.Write(c + " ")

 Next c

 Console.WriteLine()

 VB.NET

 146

 q.Enqueue("V")

 q.Enqueue("H")

 Console.WriteLine("Current queue: ")

 For Each c In q

 Console.Write(c + " ")

 Next c

 Console.WriteLine()

 Console.WriteLine("Removing some values ")

 Dim ch As Char

 ch = q.Dequeue()

 Console.WriteLine("The removed value: {0}", ch)

 ch = q.Dequeue()

 Console.WriteLine("The removed value: {0}", ch)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Current queue:

A M G W

Current queue:

A M G W V H

Removing some values

The removed value: A

The removed value: M

BitArray

The BitArray class manages a compact array of bit values, which are represented

as Booleans, where true indicates that the bit is on (1) and false indicates the bit

is off (0).

It is used when you need to store the bits but do not know the number of bits in

advance. You can access items from the BitArray collection by using an integer

index, which starts from zero.

 VB.NET

 147

Properties and Methods of the BitArray Class

The following table lists some of the commonly used properties of

the BitArray class:

Property Description

Count Gets the number of elements contained in the BitArray.

IsReadOnly Gets a value indicating whether the BitArray is read-only.

Item Gets or sets the value of the bit at a specific position in the

BitArray.

Length Gets or sets the number of elements in the BitArray.

The following table lists some of the commonly used methods of

the BitArray class:

S.N Method Name & Purpose

1 Public Function And (value As BitArray) As BitArray

Performs the bitwise AND operation on the elements in the current

BitArray against the corresponding elements in the specified BitArray.

2 Public Function Get (index As Integer) As Boolean

Gets the value of the bit at a specific position in the BitArray.

3 Public Function Not As BitArray

Inverts all the bit values in the current BitArray, so that elements set to

true are changed to false, and elements set to false are changed to true.

4 Public Function Or (value As BitArray) As BitArray

 VB.NET

 148

Performs the bitwise OR operation on the elements in the current BitArray

against the corresponding elements in the specified BitArray.

5 Public Sub Set (index As Integer, value As Boolean)

Sets the bit at a specific position in the BitArray to the specified value.

6 Public Sub SetAll (value As Boolean)

Sets all bits in the BitArray to the specified value.

7 Public Function Xor (value As BitArray) As BitArray

Performs the bitwise eXclusive OR operation on the elements in the

current BitArray against the corresponding elements in the specified

BitArray.

Example

The following example demonstrates the use of BitArray class:

Module collections

 Sub Main()

 'creating two bit arrays of size 8

 Dim ba1 As BitArray = New BitArray(8)

 Dim ba2 As BitArray = New BitArray(8)

 Dim a() As Byte = {60}

 Dim b() As Byte = {13}

 'storing the values 60, and 13 into the bit arrays

 ba1 = New BitArray(a)

 ba2 = New BitArray(b)

 'content of ba1

 Console.WriteLine("Bit array ba1: 60")

 Dim i As Integer

 For i = 0 To ba1.Count

 Console.Write("{0 } ", ba1(i))

 Next i

 Console.WriteLine()

 VB.NET

 149

 'content of ba2

 Console.WriteLine("Bit array ba2: 13")

 For i = 0 To ba2.Count

 Console.Write("{0 } ", ba2(i))

 Next i

 Console.WriteLine()

 Dim ba3 As BitArray = New BitArray(8)

 ba3 = ba1.And(ba2)

 'content of ba3

 Console.WriteLine("Bit array ba3 after AND operation: 12")

 For i = 0 To ba3.Count

 Console.Write("{0 } ", ba3(i))

 Next i

 Console.WriteLine()

 ba3 = ba1.Or(ba2)

 'content of ba3

 Console.WriteLine("Bit array ba3 after OR operation: 61")

 For i = 0 To ba3.Count

 Console.Write("{0 } ", ba3(i))

 Next i

 Console.WriteLine()

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Bit array ba1: 60

False False True True True True False False

Bit array ba2: 13

True False True True False False False False

Bit array ba3 after AND operation: 12

False False True True False False False False

Bit array ba3 after OR operation: 61

True False True True False False False False

 VB.NET

 150

 VB.NET

 151

A procedure is a group of statements that together perform a task when called.

After the procedure is executed, the control returns to the statement calling the

procedure. VB.Net has two types of procedures:

 Functions

 Sub procedures or Subs

Functions return a value, whereas Subs do not return a value.

Defining a Function

The Function statement is used to declare the name, parameter and the body of

a function. The syntax for the Function statement is:

[Modifiers] Function FunctionName [(ParameterList)] As ReturnType

 [Statements]

End Function

Where,

 Modifiers: specify the access level of the function; possible values are:

Public, Private, Protected, Friend, Protected Friend and information

regarding overloading, overriding, sharing, and shadowing.

 FunctionName: indicates the name of the function

 ParameterList: specifies the list of the parameters

 ReturnType: specifies the data type of the variable the function returns

Example

Following code snippet shows a function FindMax that takes two integer values and

returns the larger of the two.

Function FindMax(ByVal num1 As Integer, ByVal num2 As Integer) As

Integer

 ' local variable declaration */

 Dim result As Integer

 If (num1 > num2) Then

18. Functions

 VB.NET

 152

 result = num1

 Else

 result = num2

 End If

 FindMax = result

End Function

Function Returning a Value

In VB.Net, a function can return a value to the calling code in two ways:

 By using the return statement

 By assigning the value to the function name

The following example demonstrates using the FindMax function:

Module myfunctions

 Function FindMax(ByVal num1 As Integer, ByVal num2 As Integer) As

Integer

 ' local variable declaration */

 Dim result As Integer

 If (num1 > num2) Then

 result = num1

 Else

 result = num2

 End If

 FindMax = result

 End Function

 Sub Main()

 Dim a As Integer = 100

 Dim b As Integer = 200

 Dim res As Integer

 res = FindMax(a, b)

 Console.WriteLine("Max value is : {0}", res)

 Console.ReadLine()

 End Sub

End Module

 VB.NET

 153

When the above code is compiled and executed, it produces the following result:

Max value is : 200

Recursive Function

A function can call itself. This is known as recursion. Following is an example that

calculates factorial for a given number using a recursive function:

Module myfunctions

 Function factorial(ByVal num As Integer) As Integer

 ' local variable declaration */

 Dim result As Integer

 If (num = 1) Then

 Return 1

 Else

 result = factorial(num - 1) * num

 Return result

 End If

 End Function

 Sub Main()

 'calling the factorial method

 Console.WriteLine("Factorial of 6 is : {0}", factorial(6))

 Console.WriteLine("Factorial of 7 is : {0}", factorial(7))

 Console.WriteLine("Factorial of 8 is : {0}", factorial(8))

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Factorial of 6 is: 720

Factorial of 7 is: 5040

Factorial of 8 is: 40320

 VB.NET

 154

Param Arrays

At times, while declaring a function or sub procedure, you are not sure of the

number of arguments passed as a parameter. VB.Net param arrays (or parameter

arrays) come into help at these times.

The following example demonstrates this:

Module myparamfunc

 Function AddElements(ParamArray arr As Integer()) As Integer

 Dim sum As Integer = 0

 Dim i As Integer = 0

 For Each i In arr

 sum += i

 Next i

 Return sum

 End Function

 Sub Main()

 Dim sum As Integer

 sum = AddElements(512, 720, 250, 567, 889)

 Console.WriteLine("The sum is: {0}", sum)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

The sum is: 2938

Passing Arrays as Function Arguments

You can pass an array as a function argument in VB.Net. The following example

demonstrates this:

Module arrayParameter

 Function getAverage(ByVal arr As Integer(), ByVal size As Integer) As

Double

 'local variables

 Dim i As Integer

 Dim avg As Double

 VB.NET

 155

 Dim sum As Integer = 0

 For i = 0 To size - 1

 sum += arr(i)

 Next i

 avg = sum / size

 Return avg

 End Function

 Sub Main()

 ' an int array with 5 elements '

 Dim balance As Integer() = {1000, 2, 3, 17, 50}

 Dim avg As Double

 'pass pointer to the array as an argument

 avg = getAverage(balance, 5)

 ' output the returned value '

 Console.WriteLine("Average value is: {0} ", avg)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Average value is: 214.4

 VB.NET

 156

As we mentioned in the previous chapter, Sub procedures are procedures that do

not return any value. We have been using the Sub procedure Main in all our

examples. We have been writing console applications so far in these tutorials.

When these applications start, the control goes to the Main Sub procedure, and it

in turn, runs any other statements constituting the body of the program.

Defining Sub Procedures

The Sub statement is used to declare the name, parameter and the body of a sub

procedure. The syntax for the Sub statement is:

[Modifiers] Sub SubName [(ParameterList)]

 [Statements]

End Sub

Where,

 Modifiers: specify the access level of the procedure; possible values are:

Public, Private, Protected, Friend, Protected Friend and information

regarding overloading, overriding, sharing, and shadowing.

 SubName: indicates the name of the Sub

 ParameterList: specifies the list of the parameters

Example

The following example demonstrates a Sub procedure CalculatePay that takes two

parameters hours and wages and displays the total pay of an employee:

Module mysub

 Sub CalculatePay(ByVal hours As Double, ByVal wage As Decimal)

 'local variable declaration

 Dim pay As Double

 pay = hours * wage

 Console.WriteLine("Total Pay: {0:C}", pay)

 End Sub

 Sub Main()

19. Sub Procedures

 VB.NET

 157

 'calling the CalculatePay Sub Procedure

 CalculatePay(25, 10)

 CalculatePay(40, 20)

 CalculatePay(30, 27.5)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Total Pay: $250.00

Total Pay: $800.00

Total Pay: $825.00

Passing Parameters by Value

This is the default mechanism for passing parameters to a method. In this

mechanism, when a method is called, a new storage location is created for each

value parameter. The values of the actual parameters are copied into them. So,

the changes made to the parameter inside the method have no effect on the

argument.

In VB.Net, you declare the reference parameters using the ByVal keyword. The

following example demonstrates the concept:

Module paramByval

 Sub swap(ByVal x As Integer, ByVal y As Integer)

 Dim temp As Integer

 temp = x ' save the value of x

 x = y ' put y into x

 y = temp 'put temp into y

 End Sub

 Sub Main()

 ' local variable definition

 Dim a As Integer = 100

 Dim b As Integer = 200

 Console.WriteLine("Before swap, value of a : {0}", a)

 Console.WriteLine("Before swap, value of b : {0}", b)

 VB.NET

 158

 ' calling a function to swap the values '

 swap(a, b)

 Console.WriteLine("After swap, value of a : {0}", a)

 Console.WriteLine("After swap, value of b : {0}", b)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :100

After swap, value of b :200

It shows that there is no change in the values though they had been changed

inside the function.

Passing Parameters by Reference

A reference parameter is a reference to a memory location of a variable. When

you pass parameters by reference, unlike value parameters, a new storage

location is not created for these parameters. The reference parameters represent

the same memory location as the actual parameters that are supplied to the

method.

In VB.Net, you declare the reference parameters using the ByRef keyword. The

following example demonstrates this:

Module paramByref

 Sub swap(ByRef x As Integer, ByRef y As Integer)

 Dim temp As Integer

 temp = x ' save the value of x

 x = y ' put y into x

 y = temp 'put temp into y

 End Sub

 Sub Main()

 ' local variable definition

 Dim a As Integer = 100

 Dim b As Integer = 200

 VB.NET

 159

 Console.WriteLine("Before swap, value of a : {0}", a)

 Console.WriteLine("Before swap, value of b : {0}", b)

 ' calling a function to swap the values '

 swap(a, b)

 Console.WriteLine("After swap, value of a : {0}", a)

 Console.WriteLine("After swap, value of b : {0}", b)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Before swap, value of a : 100

Before swap, value of b : 200

After swap, value of a : 200

After swap, value of b : 100

 VB.NET

 160

When you define a class, you define a blueprint for a data type. This doesn't

actually define any data, but it does define what the class name means, that is,

what an object of the class will consist of and what operations can be performed

on such an object.

Objects are instances of a class. The methods and variables that constitute a class

are called members of the class.

Class Definition

A class definition starts with the keyword Class followed by the class name; and

the class body, ended by the End Class statement. Following is the general form

of a class definition:

[<attributelist>] [accessmodifier] [Shadows] [MustInherit |

NotInheritable] [Partial] _

Class name [(Of typelist)]

 [Inherits classname]

 [Implements interfacenames]

 [statements]

End Class

Where,

 attributelist is a list of attributes that apply to the class. Optional.

 accessmodifier defines the access levels of the class, it has values as -

Public, Protected, Friend, Protected Friend and Private. Optional.

 Shadows indicate that the variable re-declares and hides an identically

named element, or set of overloaded elements, in a base class. Optional.

 MustInherit specifies that the class can be used only as a base class and

that you cannot create an object directly from it, i.e., an abstract class.

Optional.

 NotInheritable specifies that the class cannot be used as a base class.

 Partial indicates a partial definition of the class.

 Inherits specifies the base class it is inheriting from.

20. Classes & Objects

 VB.NET

 161

 Implements specifies the interfaces the class is inheriting from.

The following example demonstrates a Box class, with three data members,

length, breadth, and height:

Module mybox

 Class Box

 Public length As Double ' Length of a box

 Public breadth As Double ' Breadth of a box

 Public height As Double ' Height of a box

 End Class

 Sub Main()

 Dim Box1 As Box = New Box() ' Declare Box1 of type Box

 Dim Box2 As Box = New Box() ' Declare Box2 of type Box

 Dim volume As Double = 0.0 ' Store the volume of a box here

 ' box 1 specification

 Box1.height = 5.0

 Box1.length = 6.0

 Box1.breadth = 7.0

 ' box 2 specification

 Box2.height = 10.0

 Box2.length = 12.0

 Box2.breadth = 13.0

 'volume of box 1

 volume = Box1.height * Box1.length * Box1.breadth

 Console.WriteLine("Volume of Box1 : {0}", volume)

 'volume of box 2

 volume = Box2.height * Box2.length * Box2.breadth

 Console.WriteLine("Volume of Box2 : {0}", volume)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Volume of Box1 : 210

 VB.NET

 162

Volume of Box2 : 1560

Member Functions and Encapsulation

A member function of a class is a function that has its definition or its prototype

within the class definition like any other variable. It operates on any object of the

class of which it is a member and has access to all the members of a class for that

object.

Member variables are attributes of an object (from design perspective) and they

are kept private to implement encapsulation. These variables can only be accessed

using the public member functions.

Let us put above concepts to set and get the value of different class members in

a class:

Module mybox

 Class Box

 Public length As Double ' Length of a box

 Public breadth As Double ' Breadth of a box

 Public height As Double ' Height of a box

 Public Sub setLength(ByVal len As Double)

 length = len

 End Sub

 Public Sub setBreadth(ByVal bre As Double)

 breadth = bre

 End Sub

 Public Sub setHeight(ByVal hei As Double)

 height = hei

 End Sub

 Public Function getVolume() As Double

 Return length * breadth * height

 End Function

 End Class

 Sub Main()

 Dim Box1 As Box = New Box() ' Declare Box1 of type Box

 Dim Box2 As Box = New Box() ' Declare Box2 of type Box

 Dim volume As Double = 0.0 ' Store the volume of a box here

 VB.NET

 163

 ' box 1 specification

 Box1.setLength(6.0)

 Box1.setBreadth(7.0)

 Box1.setHeight(5.0)

 'box 2 specification

 Box2.setLength(12.0)

 Box2.setBreadth(13.0)

 Box2.setHeight(10.0)

 ' volume of box 1

 volume = Box1.getVolume()

 Console.WriteLine("Volume of Box1 : {0}", volume)

 'volume of box 2

 volume = Box2.getVolume()

 Console.WriteLine("Volume of Box2 : {0}", volume)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Volume of Box1 : 210

Volume of Box2 : 1560

Constructors and Destructors

A class constructor is a special member Sub of a class that is executed whenever

we create new objects of that class. A constructor has the name New and it does

not have any return type.

Following program explains the concept of constructor:

Class Line

 Private length As Double ' Length of a line

 Public Sub New() 'constructor

 VB.NET

 164

 Console.WriteLine("Object is being created")

 End Sub

 Public Sub setLength(ByVal len As Double)

 length = len

 End Sub

 Public Function getLength() As Double

 Return length

 End Function

 Shared Sub Main()

 Dim line As Line = New Line()

 'set line length

 line.setLength(6.0)

 Console.WriteLine("Length of line : {0}", line.getLength())

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

Object is being created

Length of line : 6

A default constructor does not have any parameter, but if you need, a constructor

can have parameters. Such constructors are called parameterized

constructors. This technique helps you to assign initial value to an object at the

time of its creation as shown in the following example:

Class Line

 Private length As Double ' Length of a line

 Public Sub New(ByVal len As Double) 'parameterised constructor

 Console.WriteLine("Object is being created, length = {0}", len)

 length = len

 End Sub

 Public Sub setLength(ByVal len As Double)

 length = len

 End Sub

 VB.NET

 165

 Public Function getLength() As Double

 Return length

 End Function

 Shared Sub Main()

 Dim line As Line = New Line(10.0)

 Console.WriteLine("Length of line set by constructor : {0}",

line.getLength())

 'set line length

 line.setLength(6.0)

 Console.WriteLine("Length of line set by setLength : {0}",
line.getLength())

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

Object is being created, length = 10

Length of line set by constructor : 10

Length of line set by setLength : 6

A destructor is a special member Sub of a class that is executed whenever an

object of its class goes out of scope.

A destructor has the name Finalize and it can neither return a value nor can it

take any parameters. Destructor can be very useful for releasing resources before

coming out of the program like closing files, releasing memories, etc. Destructors

cannot be inherited or overloaded.

Following example demonstrates the concept of destructor:

Class Line

 Private length As Double ' Length of a line

 Public Sub New() 'parameterised constructor

 Console.WriteLine("Object is being created")

 End Sub

 Protected Overrides Sub Finalize() ' destructor

 Console.WriteLine("Object is being deleted")

 End Sub

 VB.NET

 166

 Public Sub setLength(ByVal len As Double)

 length = len

 End Sub

 Public Function getLength() As Double

 Return length

 End Function

 Shared Sub Main()

 Dim line As Line = New Line()

 'set line length

 line.setLength(6.0)

 Console.WriteLine("Length of line : {0}", line.getLength())

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

Object is being created

Length of line : 6

Object is being deleted

Shared Members of a VB.Net Class

We can define class members as static using the Shared keyword. When we

declare a member of a class as Shared, it means no matter how many objects of

the class are created, there is only one copy of the member.

The keyword Shared implies that only one instance of the member exists for a

class. Shared variables are used for defining constants because their values can

be retrieved by invoking the class without creating an instance of it.

Shared variables can be initialized outside the member function or class definition.

You can also initialize Shared variables inside the class definition.

You can also declare a member function as Shared. Such functions can access only

Shared variables. The Shared functions exist even before the object is created.

The following example demonstrates the use of shared members:

Class StaticVar

 Public Shared num As Integer

 Public Sub count()

 VB.NET

 167

 num = num + 1

 End Sub

 Public Shared Function getNum() As Integer

 Return num

 End Function

 Shared Sub Main()

 Dim s As StaticVar = New StaticVar()

 s.count()

 s.count()

 s.count()

 Console.WriteLine("Value of variable num: {0}",

StaticVar.getNum())

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

Value of variable num: 3

Inheritance

One of the most important concepts in object-oriented programming is that of

inheritance. Inheritance allows us to define a class in terms of another class which

makes it easier to create and maintain an application. This also provides an

opportunity to reuse the code functionality and fast implementation time.

When creating a class, instead of writing completely new data members and

member functions, the programmer can designate that the new class should

inherit the members of an existing class. This existing class is called

the base class, and the new class is referred to as the derived class.

Base & Derived Classes

A class can be derived from more than one class or interface, which means that it

can inherit data and functions from multiple base classes or interfaces.

The syntax used in VB.Net for creating derived classes is as follows:

<access-specifier> Class <base_class>

...

 VB.NET

 168

End Class

Class <derived_class>: Inherits <base_class>

...

End Class

Consider a base class Shape and its derived class Rectangle:

' Base class

Class Shape

 Protected width As Integer

 Protected height As Integer

 Public Sub setWidth(ByVal w As Integer)

 width = w

 End Sub

 Public Sub setHeight(ByVal h As Integer)

 height = h

 End Sub

End Class

' Derived class

Class Rectangle : Inherits Shape

 Public Function getArea() As Integer

 Return (width * height)

 End Function

End Class

Class RectangleTester

 Shared Sub Main()

 Dim rect As Rectangle = New Rectangle()

 rect.setWidth(5)

 rect.setHeight(7)

 ' Print the area of the object.

 Console.WriteLine("Total area: {0}", rect.getArea())

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

 VB.NET

 169

Total area: 35

Base Class Initialization

The derived class inherits the base class member variables and member methods.

Therefore, the super class object should be created before the subclass is created.

The super class or the base class is implicitly known as MyBase in VB.Net

The following program demonstrates this:

' Base class

Class Rectangle

 Protected width As Double

 Protected length As Double

 Public Sub New(ByVal l As Double, ByVal w As Double)

 length = l

 width = w

 End Sub

 Public Function GetArea() As Double

 Return (width * length)

 End Function

 Public Overridable Sub Display()

 Console.WriteLine("Length: {0}", length)

 Console.WriteLine("Width: {0}", width)

 Console.WriteLine("Area: {0}", GetArea())

 End Sub

 'end class Rectangle

End Class

'Derived class

Class Tabletop : Inherits Rectangle

 Private cost As Double

 Public Sub New(ByVal l As Double, ByVal w As Double)

 MyBase.New(l, w)

 End Sub

 Public Function GetCost() As Double

 Dim cost As Double

 VB.NET

 170

 cost = GetArea() * 70

 Return cost

 End Function

 Public Overrides Sub Display()

 MyBase.Display()

 Console.WriteLine("Cost: {0}", GetCost())

 End Sub

 'end class Tabletop

End Class

Class RectangleTester

 Shared Sub Main()

 Dim t As Tabletop = New Tabletop(4.5, 7.5)

 t.Display()

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

Length: 4.5

Width: 7.5

Area: 33.75

Cost: 2362.5

VB.Net supports multiple inheritance.

 VB.NET

 171

An exception is a problem that arises during the execution of a program. An

exception is a response to an exceptional circumstance that arises while a program

is running, such as an attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to

another. VB.Net exception handling is built upon four keywords:

Try, Catch, Finally and Throw.

 Try: A Try block identifies a block of code for which particular exceptions

will be activated. It's followed by one or more Catch blocks.

 Catch: A program catches an exception with an exception handler at the

place in a program where you want to handle the problem. The Catch

keyword indicates the catching of an exception.

 Finally: The Finally block is used to execute a given set of statements,

whether an exception is thrown or not thrown. For example, if you open a

file, it must be closed whether an exception is raised or not.

 Throw: A program throws an exception when a problem shows up. This is

done using a Throw keyword.

Syntax

Assuming a block will raise an exception, a method catches an exception using a

combination of the Try and Catch keywords. A Try/Catch block is placed around

the code that might generate an exception. Code within a Try/Catch block is

referred to as protected code, and the syntax for using Try/Catch looks like the

following:

Try

 [tryStatements]

 [Exit Try]

[Catch [exception [As type]] [When expression]

 [catchStatements]

 [Exit Try]]

[Catch ...]

[Finally

 [finallyStatements]]

21. Exception Handling

 VB.NET

 172

End Try

You can list down multiple catch statements to catch different type of exceptions

in case your try block raises more than one exception in different situations.

Exception Classes in .Net Framework

In the .Net Framework, exceptions are represented by classes. The exception

classes in .Net Framework are mainly directly or indirectly derived from

the System.Exception class. Some of the exception classes derived from the

System.Exception class are the System.ApplicationException and

System.SystemException classes.

The System.ApplicationException class supports exceptions generated by

application programs. So the exceptions defined by the programmers should

derive from this class. The System.SystemException class is the base class for

all predefined system exception.

The following table provides some of the predefined exception classes derived

from the Sytem.SystemException class:

Exception Class Description

System.IO.IOException Handles I/O errors.

System.IndexOutOfRangeException Handles errors generated when a

method refers to an array index out of

range.

System.ArrayTypeMismatchException Handles errors generated when type is

mismatched with the array type.

System.NullReferenceException Handles errors generated from

deferencing a null object.

System.DivideByZeroException Handles errors generated from dividing

a dividend with zero.

System.InvalidCastException Handles errors generated during

typecasting.

System.OutOfMemoryException Handles errors generated from

insufficient free memory.

 VB.NET

 173

System.StackOverflowException Handles errors generated from stack

overflow.

Handling Exceptions

VB.Net provides a structured solution to the exception handling problems in the

form of try and catch blocks. Using these blocks the core program statements are

separated from the error-handling statements.

These error handling blocks are implemented using the Try, Catch and Finally

keywords. Following is an example of throwing an exception when dividing by zero

condition occurs:

Module exceptionProg

 Sub division(ByVal num1 As Integer, ByVal num2 As Integer)

 Dim result As Integer

 Try

 result = num1 \ num2

 Catch e As DivideByZeroException

 Console.WriteLine("Exception caught: {0}", e)

 Finally

 Console.WriteLine("Result: {0}", result)

 End Try

 End Sub

 Sub Main()

 division(25, 0)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Exception caught: System.DivideByZeroException: Attempted to divide by

zero.

at ...

Result: 0

 VB.NET

 174

Creating User-Defined Exceptions

You can also define your own exception. User-defined exception classes are

derived from the ApplicationException class. The following example

demonstrates this:

Module exceptionProg

 Public Class TempIsZeroException : Inherits ApplicationException

 Public Sub New(ByVal message As String)

 MyBase.New(message)

 End Sub

 End Class

 Public Class Temperature

 Dim temperature As Integer = 0

 Sub showTemp()

 If (temperature = 0) Then

 Throw (New TempIsZeroException("Zero Temperature found"))

 Else

 Console.WriteLine("Temperature: {0}", temperature)

 End If

 End Sub

 End Class

 Sub Main()

 Dim temp As Temperature = New Temperature()

 Try

 temp.showTemp()

 Catch e As TempIsZeroException

 Console.WriteLine("TempIsZeroException: {0}", e.Message)

 End Try

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

TempIsZeroException: Zero Temperature found

 VB.NET

 175

Throwing Objects

You can throw an object if it is either directly or indirectly derived from the

System.Exception class. You can use a throw statement in the catch block to throw

the present object as:

Throw [expression]

The following program demonstrates this:

Module exceptionProg

 Sub Main()

 Try

 Throw New ApplicationException("A custom exception _

 is being thrown here...")

 Catch e As Exception

 Console.WriteLine(e.Message)

 Finally

 Console.WriteLine("Now inside the Finally Block")

 End Try

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

A custom exception is being thrown here...

Now inside the Finally Block

 VB.NET

 176

A file is a collection of data stored in a disk with a specific name and a directory

path. When a file is opened for reading or writing, it becomes a stream.

The stream is basically the sequence of bytes passing through the communication

path. There are two main streams: the input stream and the output stream.

The input stream is used for reading data from file (read operation) and

the output stream is used for writing into the file (write operation).

VB.Net I/O Classes

The System.IO namespace has various classes that are used for performing

various operations with files, like creating and deleting files, reading from or

writing to a file, closing a file, etc.

The following table shows some commonly used non-abstract classes in the

System.IO namespace:

I/O Class Description

BinaryReader Reads primitive data from a binary stream.

BinaryWriter Writes primitive data in binary format.

BufferedStream A temporary storage for a stream of bytes.

Directory Helps in manipulating a directory structure.

DirectoryInfo Used for performing operations on directories.

DriveInfo Provides information for the drives.

File Helps in manipulating files.

FileInfo Used for performing operations on files.

22. File Handling

 VB.NET

 177

FileStream Used to read from and write to any location in a file.

MemoryStream Used for random access of streamed data stored in

memory.

Path Performs operations on path information.

StreamReader Used for reading characters from a byte stream.

StreamWriter Is used for writing characters to a stream.

StringReader Is used for reading from a string buffer.

StringWriter Is used for writing into a string buffer.

The FileStream Class

The FileStream class in the System.IO namespace helps in reading from, writing

to and closing files. This class derives from the abstract class Stream.

You need to create a FileStream object to create a new file or open an existing

file. The syntax for creating a FileStream object is as follows:

Dim <object_name> As FileStream = New FileStream(<file_name>, <FileMode

Enumerator>, <FileAccess Enumerator>, <FileShare Enumerator>)

For example, for creating a FileStream object F for reading a file

named sample.txt:

Dim f1 As FileStream = New FileStream("test.dat", FileMode.OpenOrCreate,

FileAccess.ReadWrite)

Parameter Description

FileMode The FileMode enumerator defines various methods for

opening files. The members of the FileMode enumerator are:

 VB.NET

 178

 Append: It opens an existing file and puts cursor at the

end of file, or creates the file, if the file does not exist.

 Create: It creates a new file.

 CreateNew: It specifies to the operating system that it

should create a new file.

 Open: It opens an existing file.

 OpenOrCreate: It specifies to the operating system that

it should open a file if it exists, otherwise it should create

a new file.

 Truncate: It opens an existing file and truncates its size

to zero bytes.

FileAccess FileAccess enumerators have members: Read, ReadWrite,

and Write.

FileShare

FileShare enumerators have the following members:

 Inheritable: It allows a file handle to pass inheritance

to the child processes

 None: It declines sharing of the current file

 Read: It allows opening the file for reading

 ReadWrite: It allows opening the file for reading and

writing

 Write: It allows opening the file for writing

Example

The following program demonstrates use of the FileStream class:

Imports System.IO

Module fileProg

 VB.NET

 179

 Sub Main()

 Dim f1 As FileStream = New FileStream("test.dat", _

 FileMode.OpenOrCreate, FileAccess.ReadWrite)

 Dim i As Integer

 For i = 0 To 20

 f1.WriteByte(CByte(i))

 Next i

 f1.Position = 0

 For i = 0 To 20

 Console.Write("{0} ", f1.ReadByte())

 Next i

 f1.Close()

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 -1

Advanced File Operations in VB.Net

The preceding example provides simple file operations in VB.Net. However, to

utilize the immense powers of System.IO classes, you need to know the commonly

used properties and methods of these classes.

We will discuss these classes and the operations they perform in the following

sections. Please click the links provided to get to the individual sections:

Topic and Description

Reading from and Writing into Text files

It involves reading from and writing into text files.

The StreamReader andStreamWriter classes help to accomplish it.

Reading from and Writing into Binary files

It involves reading from and writing into binary files. The BinaryReader and

BinaryWriter classes help to accomplish this.

 VB.NET

 180

Manipulating the Windows file system

It gives a VB.Net programmer the ability to browse and locate Windows files

and directories.

Reading from and Writing to Text Files

The StreamReader and StreamWriter classes are used for reading from and

writing data to text files. These classes inherit from the abstract base class

Stream, which supports reading and writing bytes into a file stream.

The StreamReader Class

The StreamReader class also inherits from the abstract base class TextReader

that represents a reader for reading series of characters. The following table

describes some of the commonly used methods of the StreamReader class:

S.N Method Name & Purpose

1 Public Overrides Sub Close

It closes the StreamReader object and the underlying stream and

releases any system resources associated with the reader.

2 Public Overrides Function Peek As Integer

Returns the next available character but does not consume it.

3 Public Overrides Function Read As Integer

Reads the next character from the input stream and advances the

character position by one character.

Example

The following example demonstrates reading a text file named Jamaica.txt. The

file reads:

Down the way where the nights are gay

And the sun shines daily on the mountain top

I took a trip on a sailing ship

And when I reached Jamaica

I made a stop

Imports System.IO

 VB.NET

 181

Module fileProg

 Sub Main()

 Try

 ' Create an instance of StreamReader to read from a file.

 ' The using statement also closes the StreamReader.

 Using sr As StreamReader = New StreamReader("e:/jamaica.txt")

 Dim line As String

 ' Read and display lines from the file until the end of

 ' the file is reached.

 line = sr.ReadLine()

 While (line <> Nothing)

 Console.WriteLine(line)

 line = sr.ReadLine()

 End While

 End Using

 Catch e As Exception

 ' Let the user know what went wrong.

 Console.WriteLine("The file could not be read:")

 Console.WriteLine(e.Message)

 End Try

 Console.ReadKey()

 End Sub

End Module

Guess what it displays when you compile and run the program!

The StreamWriter Class

The StreamWriter class inherits from the abstract class TextWriter that

represents a writer, which can write a series of character.

The following table shows some of the most commonly used methods of this class:

S.N Method Name & Purpose

1 Public Overrides Sub Close

Closes the current StreamWriter object and the underlying stream.

 VB.NET

 182

2 Public Overrides Sub Flush

Clears all buffers for the current writer and causes any buffered data to

be written to the underlying stream.

3 Public Overridable Sub Write (value As Boolean)

Writes the text representation of a Boolean value to the text string or

stream. (Inherited from TextWriter.)

4 Public Overrides Sub Write (value As Char)

Writes a character to the stream.

5 Public Overridable Sub Write (value As Decimal)

Writes the text representation of a decimal value to the text string or

stream.

6 Public Overridable Sub Write (value As Double)

Writes the text representation of an 8-byte floating-point value to the

text string or stream.

7 Public Overridable Sub Write (value As Integer)

Writes the text representation of a 4-byte signed integer to the text

string or stream.

8 Public Overrides Sub Write (value As String)

Writes a string to the stream.

9 Public Overridable Sub WriteLine

Writes a line terminator to the text string or stream.

The above list is not exhaustive. For complete list of methods please visit

Microsoft's documentation

Example

The following example demonstrates writing text data into a file using the

StreamWriter class:

Imports System.IO

Module fileProg

 Sub Main()

 Dim names As String() = New String() {"Zara Ali", _

 VB.NET

 183

 "Nuha Ali", "Amir Sohel", "M Amlan"}

 Dim s As String

 Using sw As StreamWriter = New StreamWriter("names.txt")

 For Each s In names

 sw.WriteLine(s)

 Next s

 End Using

 ' Read and show each line from the file.

 Dim line As String

 Using sr As StreamReader = New StreamReader("names.txt")

 line = sr.ReadLine()

 While (line <> Nothing)

 Console.WriteLine(line)

 line = sr.ReadLine()

 End While

 End Using

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Zara Ali

Nuha Ali

Amir Sohel

M Amlan

Binary Files

The BinaryReader and BinaryWriter classes are used for reading from and

writing to a binary file.

The BinaryReader Class

The BinaryReader class is used to read binary data from a file.

A BinaryReader object is created by passing a FileStream object to its

constructor.

 VB.NET

 184

The following table shows some of the commonly used methods of

the BinaryReaderclass.

S.N Method Name & Purpose

1 Public Overridable Sub Close

It closes the BinaryReader object and the underlying stream.

2 Public Overridable Function Read As Integer

Reads the characters from the underlying stream and advances the

current position of the stream.

3 Public Overridable Function ReadBoolean As Boolean

Reads a Boolean value from the current stream and advances the current

position of the stream by one byte.

4 Public Overridable Function ReadByte As Byte

Reads the next byte from the current stream and advances the current

position of the stream by one byte.

5 Public Overridable Function ReadBytes (count As Integer) As

Byte()

Reads the specified number of bytes from the current stream into a byte

array and advances the current position by that number of bytes.

6 Public Overridable Function ReadChar As Char

Reads the next character from the current stream and advances the

current position of the stream in accordance with the Encoding used and

the specific character being read from the stream.

7 Public Overridable Function ReadChars (count As Integer) As

Char()

Reads the specified number of characters from the current stream,

returns the data in a character array, and advances the current position

in accordance with the Encoding used and the specific character being

read from the stream.

8 Public Overridable Function ReadDouble As Double

Reads an 8-byte floating point value from the current stream and

advances the current position of the stream by eight bytes.

 VB.NET

 185

9 Public Overridable Function ReadInt32 As Integer

Reads a 4-byte signed integer from the current stream and advances the

current position of the stream by four bytes.

10 Public Overridable Function ReadString As String

Reads a string from the current stream. The string is prefixed with the

length, encoded as an integer seven bits at a time.

The BinaryWriter Class

The BinaryWriter class is used to write binary data to a stream. A BinaryWriter

object is created by passing a FileStream object to its constructor.

The following table shows some of the commonly used methods of the

BinaryWriter class.

S.N Function Name & Description

1 Public Overridable Sub Close

It closes the BinaryWriter object and the underlying stream.

2 Public Overridable Sub Flush

Clears all buffers for the current writer and causes any buffered data to

be written to the underlying device.

3 Public Overridable Function Seek (offset As Integer, origin As

SeekOrigin) As Long

Sets the position within the current stream.

4 Public Overridable Sub Write (value As Boolean)

Writes a one-byte Boolean value to the current stream, with 0

representing false and 1 representing true.

5 Public Overridable Sub Write (value As Byte)

Writes an unsigned byte to the current stream and advances the stream

position by one byte.

6 Public Overridable Sub Write (buffer As Byte())

Writes a byte array to the underlying stream.

7 Public Overridable Sub Write (ch As Char)

 VB.NET

 186

Writes a Unicode character to the current stream and advances the

current position of the stream in accordance with the Encoding used and

the specific characters being written to the stream.

8 Public Overridable Sub Write (chars As Char())

Writes a character array to the current stream and advances the current

position of the stream in accordance with the Encoding used and the

specific characters being written to the stream.

9 Public Overridable Sub Write (value As Double)

Writes an eight-byte floating-point value to the current stream and

advances the stream position by eight bytes.

10 Public Overridable Sub Write (value As Integer)

Writes a four-byte signed integer to the current stream and advances the

stream position by four bytes.

11 Public Overridable Sub Write (value As String)

Writes a length-prefixed string to this stream in the current encoding of

the BinaryWriter and advances the current position of the stream in

accordance with the encoding used and the specific characters being

written to the stream.

For complete list of methods, please visit Microsoft's documentation.

Example

The following example demonstrates reading and writing binary data:

Imports System.IO

Module fileProg

 Sub Main()

 Dim bw As BinaryWriter

 Dim br As BinaryReader

 Dim i As Integer = 25

 Dim d As Double = 3.14157

 Dim b As Boolean = True

 Dim s As String = "I am happy"

 'create the file

 Try

 VB.NET

 187

 bw = New BinaryWriter(New FileStream("mydata",

FileMode.Create))

 Catch e As IOException

 Console.WriteLine(e.Message + "\n Cannot create file.")

 Return

 End Try

 'writing into the file

 Try

 bw.Write(i)

 bw.Write(d)

 bw.Write(b)

 bw.Write(s)

 Catch e As IOException

 Console.WriteLine(e.Message + "\n Cannot write to file.")

 Return

 End Try

 bw.Close()

 'reading from the file

 Try

 br = New BinaryReader(New FileStream("mydata", FileMode.Open))

 Catch e As IOException

 Console.WriteLine(e.Message + "\n Cannot open file.")

 Return

 End Try

 Try

 i = br.ReadInt32()

 Console.WriteLine("Integer data: {0}", i)

 d = br.ReadDouble()

 Console.WriteLine("Double data: {0}", d)

 b = br.ReadBoolean()

 Console.WriteLine("Boolean data: {0}", b)

 s = br.ReadString()

 Console.WriteLine("String data: {0}", s)

 Catch e As IOException

 VB.NET

 188

 Console.WriteLine(e.Message + "\n Cannot read from file.")

 Return

 End Try

 br.Close()

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Integer data: 25

Double data: 3.14157

Boolean data: True

String data: I am happy

Windows File System

VB.Net allows you to work with the directories and files using various directory

and file-related classes like, the DirectoryInfo class and the FileInfo class.

The DirectoryInfo Class

The DirectoryInfo class is derived from the FileSystemInfo class. It has

various methods for creating, moving, and browsing through directories and

subdirectories. This class cannot be inherited.

Following are some commonly used properties of the DirectoryInfo class:

S.N Property Name & Description

1 Attributes

Gets the attributes for the current file or directory.

2 CreationTime

Gets the creation time of the current file or directory.

3 Exists

Gets a Boolean value indicating whether the directory exists.

4 Extension

Gets the string representing the file extension.

 VB.NET

 189

5 FullName

Gets the full path of the directory or file.

6 LastAccessTime

Gets the time the current file or directory was last accessed.

7 Name

Gets the name of this DirectoryInfo instance.

Following are some commonly used methods of the DirectoryInfo class:

S.N Method Name & Purpose

1 Public Sub Create

Creates a directory.

2 Public Function CreateSubdirectory (path As String) As

DirectoryInfo

Creates a subdirectory or subdirectories on the specified path. The

specified path can be relative to this instance of the DirectoryInfo class.

3 Public Overrides Sub Delete

Deletes this DirectoryInfo if it is empty.

4 Public Function GetDirectories As DirectoryInfo()

Returns the subdirectories of the current directory.

5 Public Function GetFiles As FileInfo()

Returns a file list from the current directory.

For complete list of properties and methods please visit Microsoft's documentation.

The FileInfo Class

The FileInfo class is derived from the FileSystemInfo class. It has properties

and instance methods for creating, copying, deleting, moving, and opening of files,

and helps in the creation of FileStream objects. This class cannot be inherited.

Following are some commonly used properties of the FileInfo class:

 VB.NET

 190

S.N Property Name & Description

1 Attributes

Gets the attributes for the current file.

2 CreationTime

Gets the creation time of the current file.

3 Directory

Gets an instance of the directory, which the file belongs to.

4 Exists

Gets a Boolean value indicating whether the file exists.

5 Extension

Gets the string representing the file extension.

6 FullName

Gets the full path of the file.

7 LastAccessTime

Gets the time the current file was last accessed.

8 LastWriteTime

Gets the time of the last written activity of the file.

9 Length

Gets the size, in bytes, of the current file.

10 Name

Gets the name of the file.

Following are some commonly used methods of the FileInfo class:

S.N Method Name & Purpose

1 Public Function AppendText As StreamWriter

Creates a StreamWriter that appends text to the file represented by this

instance of the FileInfo.

 VB.NET

 191

2 Public Function Create As FileStream

Creates a file.

3 Public Overrides Sub Delete

Deletes a file permanently.

4 Public Sub MoveTo (destFileName As String)

Moves a specified file to a new location, providing the option to specify a

new file name.

5 Public Function Open (mode As FileMode) As FileStream

Opens a file in the specified mode.

6 Public Function Open (mode As FileMode, access As FileAccess)

As FileStream

Opens a file in the specified mode with read, write, or read/write access.

7 Public Function Open (mode As FileMode, access As FileAccess,

share As FileShare) As FileStream

Opens a file in the specified mode with read, write, or read/write access

and the specified sharing option.

8 Public Function OpenRead As FileStream

Creates a read-only FileStream

9 Public Function OpenWrite As FileStream

Creates a write-only FileStream.

For complete list of properties and methods, please visit Microsoft's documentation

Example

The following example demonstrates the use of the above-mentioned classes:

Imports System.IO

Module fileProg

 Sub Main()

 'creating a DirectoryInfo object

 Dim mydir As DirectoryInfo = New DirectoryInfo("c:\Windows")

 ' getting the files in the directory, their names and size

 Dim f As FileInfo() = mydir.GetFiles()

 VB.NET

 192

 Dim file As FileInfo

 For Each file In f

 Console.WriteLine("File Name: {0} Size: {1} ", file.Name,

file.Length)

 Next file

 Console.ReadKey()

 End Sub

End Module

When you compile and run the program, it displays the names of files and their

size in the Windows directory.

 VB.NET

 193

An object is a type of user interface element you create on a Visual Basic form by

using a toolbox control. In fact, in Visual Basic, the form itself is an object. Every

Visual Basic control consists of three important elements:

Properties which describe the object,

Methods cause an object to do something and

Events are what happens when an object does something.

Control Properties

All the Visual Basic Objects can be moved, resized, or customized by setting their

properties. A property is a value or characteristic held by a Visual Basic object,

such as Caption or Fore Color.

Properties can be set at design time by using the Properties window or at run time

by using statements in the program code.

Object. Property = Value

Where,

Object is the name of the object you're customizing.

Property is the characteristic you want t,o change.

Value is the new property setting.

For example,

Form1.Caption = "Hello"

You can set any of the form properties using Properties Window. Most of the

properties can be set or read during application execution. You can refer to

Microsoft documentation for a complete list of properties associated with different

controls and restrictions applied to them.

Control Methods

A method is a procedure created as a member of a class and they cause an object

to do something. Methods are used to access or manipulate the characteristics of

an object or a variable. There are mainly two categories of methods you will use

in your classes:

23. Basic Controls

 VB.NET

 194

 If you are using a control such as one of those provided by the Toolbox,

you can call any of its public methods. The requirements of such a method

depend on the class being used.

 If none of the existing methods can perform your desired task, you can add

a method to a class.

For example, the MessageBox control has a method named Show, which is called

in the code snippet below:

Public Class Form1

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs)

 Handles Button1.Click

 MessageBox.Show("Hello, World")

 End Sub

End Class

Control Events

An event is a signal that informs an application that something important has

occurred. For example, when a user clicks a control on a form, the form can raise

a Click event and call a procedure that handles the event. There are various types

of events associated with a Form like click, double click, close, load, resize, etc.

Following is the default structure of a form Load event handler subroutine. You

can see this code by double clicking the code which will give you a complete list

of the all events associated with Form control:

Private Sub Form1_Load(sender As Object, e As EventArgs) Handles

MyBase.Load

 'event handler code goes here

End Sub

Here, Handles MyBase.Load indicates that Form1_Load() subroutine

handles Load event. Similar way, you can check stub code for click, double click.

If you want to initialize some variables like properties, etc., then you will keep

such code inside Form1_Load() subroutine. Here, important point to note is the

name of the event handler, which is by default Form1_Load, but you can change

this name based on your naming convention you use in your application

programming.

 VB.NET

 195

Basic Controls

VB.Net provides a huge variety of controls that help you to create rich user

interface. Functionalities of all these controls are defined in the respective control

classes. The control classes are defined in the System.Windows.Forms

namespace.

The following table lists some of the commonly used controls:

S.N. Widget & Description

1 Forms

The container for all the controls that make up the user interface.

2 TextBox

It represents a Windows text box control.

3 Label

It represents a standard Windows label.

4 Button

It represents a Windows button control.

5 ListBox

It represents a Windows control to display a list of items.

6 ComboBox

It represents a Windows combo box control.

7 RadioButton

It enables the user to select a single option from a group of choices when

paired with other RadioButton controls.

8 CheckBox

It represents a Windows CheckBox.

9 PictureBox

It represents a Windows picture box control for displaying an image.

10 ProgressBar

It represents a Windows progress bar control.

 VB.NET

 196

11 ScrollBar

It Implements the basic functionality of a scroll bar control.

12 DateTimePicker

It represents a Windows control that allows the user to select a date and

a time and to display the date and time with a specified format.

13 TreeView

It displays a hierarchical collection of labeled items, each represented by

a TreeNode.

14 ListView

It represents a Windows list view control, which displays a collection of

items that can be displayed using one of four different views.

Forms

Let's start with creating a Window Forms Application by following the following

steps in Microsoft Visual Studio: File -> New Project -> Windows Forms

Applications

Finally, select OK, Microsoft Visual Studio creates your project and displays

following window Form with a name Form1.

 VB.NET

 197

Visual Basic Form is the container for all the controls that make up the user

interface. Every window you see in a running visual basic application is a form,

thus the terms form and window describe the same entity. Visual Studio creates

a default form for you when you create a Windows Forms Application.

Every form will have title bar on which the form's caption is displayed and there

will be buttons to close, maximize and minimize the form shown below:

 VB.NET

 198

If you click the icon on the top left corner, it opens the control menu, which

contains the various commands to control the form like to move control from one

place to another place, to maximize or minimize the form or to close the form.

Form Properties

Following table lists down various important properties related to a form. These

properties can be set or read during application execution. You can refer to

Microsoft documentation for a complete list of properties associated with a Form

control:

S.N Properties Description

1 AcceptButton The button that's automatically activated when you

press Enter, no matter which control has the focus

at the time. Usually the OK button on a form is set

as AcceptButton for a form.

2 CancelButton The button that's automatically activated when

you hit the Esc key.

 VB.NET

 199

Usually, the Cancel button on a form is set as

CancelButton for a form.

3 AutoScale This Boolean property determines whether the

controls you place on the form are automatically

scaled to the height of the current font. The default

value of this property is True. This is a property of

the form, but it affects the controls on the form.

4 AutoScroll This Boolean property indicates whether scroll bars

will be automatically attached to the form if it is

resized to a point that not all its controls are visible.

5 AutoScrollMinSize This property lets you specify the minimum size of

the form, before the scroll bars are attached.

6 AutoScrollPosition The AutoScrollPosition is the number of pixels by

which the two scroll bars were displaced from their

initial locations.

7 BackColor Sets the form background color.

8 BorderStyle The BorderStyle property determines the style of

the form's border and the appearance of the form:

 None: Borderless window that can't be

resized.

 Sizable: This is default value and will be

used for resizable window that's used for

displaying regular forms.

 Fixed3D: Window with a visible border,

"raised" relative to the main area. In this

case, windows can't be resized.

 FixedDialog: A fixed window, used to

create dialog boxes.

 FixedSingle: A fixed window with a single

line border.

 VB.NET

 200

 FixedToolWindow: A fixed window with a

Close button only. It looks like the toolbar

displayed by the drawing and imaging

applications.

 SizableToolWindow: Same as the

FixedToolWindow but resizable. In addition,

its caption font is smaller than the usual.

9 ControlBox By default, this property is True and you can set it

to False to hide the icon and disable the Control

menu.

10 Enabled If True, allows the form to respond to mouse and

keyboard events; if False, disables form.

11 Font This property specify font type, style, size

12 HelpButton Determines whether a Help button should be

displayed in the caption box of the form.

13 Height This is the height of the Form in pixels.

14 MinimizeBox By default, this property is True and you can set it

to False to hide the Minimize button on the title bar.

15 MaximizeBox By default, this property is True and you can set it

to False to hide the Maximize button on the title

bar.

16 MinimumSize This specifies the minimum height and width of the

window you can minimize.

17 MaximumSize This specifies the maximum height and width of the

window you maximize.

18 Name This is the actual name of the form.

 VB.NET

 201

19 StartPosition This property determines the initial position of the

form when it's first displayed. It will have any of

the following values:

 CenterParent: The form is centered in the

area of its parent form.

 CenterScreen: The form is centered on the

monitor.

 Manual: The location and size of the form

will determine its starting position.

 WindowsDefaultBounds: The form is

positioned at the default location and size

determined by Windows.

 WindowsDefaultLocation: The form is

positioned at the Windows default location

and has the dimensions you've set at

design time.

20 Text The text, which will appear at the title bar of the

form.

21 Top, Left These two properties set or return the coordinates

of the form's top-left corner in pixels.

22 TopMost This property is a True/False value that lets you

specify whether the form will remain on top of all

other forms in your application. Its default property

is False.

23 Width This is the width of the form in pixel.

Form Methods

The following are some of the commonly used methods of the Form class.You can

refer to Microsoft documentation for a complete list of methods associated with

forms control:

 VB.NET

 202

S.N. Method Name & Description

1 Activate

Activates the form and gives it focus.

2 ActivateMdiChild

Activates the MDI child of a form.

3 AddOwnedForm

Adds an owned form to this form.

4 BringToFront

Brings the control to the front of the z-order.

5 CenterToParent

Centers the position of the form within the bounds of the parent form.

6 CenterToScreen

Centers the form on the current screen.

7 Close

Closes the form.

8 Contains

Retrieves a value indicating whether the specified control is a child of the

control.

9 Focus

Sets input focus to the control.

10 Hide

Conceals the control from the user.

11 Refresh

Forces the control to invalidate its client area and immediately redraw

itself and any child controls.

 VB.NET

 203

12 Scale(SizeF)

Scales the control and all child controls by the specified scaling factor.

13 ScaleControl

Scales the location, size, padding, and margin of a control.

14 ScaleCore

Performs scaling of the form.

15 Select

Activates the control.

16 SendToBack

Sends the control to the back of the z-order.

17 SetAutoScrollMargin

Sets the size of the auto-scroll margins.

18 SetDesktopBounds

Sets the bounds of the form in desktop coordinates.

19 SetDesktopLocation

Sets the location of the form in desktop coordinates.

20 SetDisplayRectLocation

Positions the display window to the specified value.

21 Show

Displays the control to the user.

22 ShowDialog

Shows the form as a modal dialog box.

Form Events

Following table lists down various important events related to a form. You can

refer to Microsoft documentation for a complete list of events associated with

forms control:

S.N Event Description

 VB.NET

 204

1 Activated Occurs when the form is activated in code or by the

user.

2 Click Occurs when the form is clicked.

3 Closed Occurs before the form is closed.

4 Closing Occurs when the form is closing.

5 DoubleClick Occurs when the form control is double-clicked.

6 DragDrop Occurs when a drag-and-drop operation is

completed.

7 Enter Occurs when the form is entered.

8 GotFocus Occurs when the form control receives focus.

9 HelpButtonClicked Occurs when the Help button is clicked.

10 KeyDown Occurs when a key is pressed while the form has

focus.

11 KeyPress Occurs when a key is pressed while the form has

focus.

12 KeyUp Occurs when a key is released while the form has

focus.

13 Load Occurs before a form is displayed for the first time.

14 LostFocus Occurs when the form loses focus.

 VB.NET

 205

15 MouseDown Occurs when the mouse pointer is over the form

and a mouse button is pressed.

16 MouseEnter Occurs when the mouse pointer enters the form.

17 MouseHover Occurs when the mouse pointer rests on the form.

18 MouseLeave Occurs when the mouse pointer leaves the form.

19 MouseMove Occurs when the mouse pointer is moved over the

form.

20 MouseUp Occurs when the mouse pointer is over the form

and a mouse button is released.

21 MouseWheel Occurs when the mouse wheel moves while the

control has focus.

22 Move Occurs when the form is moved.

23 Resize Occurs when the control is resized.

24 Scroll Occurs when the user or code scrolls through the

client area.

25 Shown Occurs whenever the form is first displayed.

26 VisibleChanged Occurs when the Visible property value changes.

Example

Following is an example, which shows how we create two buttons at the time of

form load event and different properties are being set at the same time.

 VB.NET

 206

Because Form1 is being referenced within its own event handler, so it will be

written as Me instead of using its name, but if we access the same form inside

any other control's event handler, then it will be accessed using its name Form1.

Let's double click on the Form and put the follow code in the opened window.

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles

MyBase.Load

 ' Create two buttons to use as the accept and cancel buttons.

 Dim button1 As New Button()

 Dim button2 As New Button()

 ' Set the text of button1 to "OK".

 button1.Text = "OK"

 ' Set the position of the button on the form.

 button1.Location = New Point(10, 10)

 ' Set the text of button2 to "Cancel".

 button2.Text = "Cancel"

 ' Set the position of the button based on the location of button1.

 button2.Location = _

 New Point(button1.Left, button1.Height + button1.Top + 10)

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 ' Display a help button on the form.

 Me.HelpButton = True

 ' Define the border style of the form to a dialog box.

 Me.FormBorderStyle = FormBorderStyle.FixedDialog

 ' Set the MaximizeBox to false to remove the maximize box.

 Me.MaximizeBox = False

 ' Set the MinimizeBox to false to remove the minimize box.

 Me.MinimizeBox = False

 ' Set the accept button of the form to button1.

 Me.AcceptButton = button1

 ' Set the cancel button of the form to button2.

 Me.CancelButton = button2

 VB.NET

 207

 ' Set the start position of the form to the center of the screen.

 Me.StartPosition = FormStartPosition.CenterScreen

 ' Set window width and height

 Me.Height = 300

 Me.Width = 560

 ' Add button1 to the form.

 Me.Controls.Add(button1)

 ' Add button2 to the form.

 Me.Controls.Add(button2)

 End Sub

End Class

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

TextBox Control

Text box controls allow entering text on a form at runtime. By default, it takes a

single line of text, however, you can make it accept multiple texts and even add

scroll bars to it.

Let's create a text box by dragging a Text Box control from the Toolbox and

dropping it on the form.

 VB.NET

 208

The Properties of the TextBox Control

The following are some of the commonly used properties of the TextBox control:

S.N Property Description

1 AcceptsReturn

Gets or sets a value indicating whether

pressing ENTER in a multiline TextBox

control creates a new line of text in the

control or activates the default button for

the form.

2
AutoCompleteCustomSo

urce

Gets or sets a custom

System.Collections.Specialized.StringColle

ction to use when the

AutoCompleteSourceproperty is set to

CustomSource.

3 AutoCompleteMode

Gets or sets an option that controls how

automatic completion works for the

TextBox.

 VB.NET

 209

4 AutoCompleteSource

Gets or sets a value specifying the source

of complete strings used for automatic

completion.

5 CharacterCasing

Gets or sets whether the TextBox control

modifies the case of characters as they are

typed.

6 Font
Gets or sets the font of the text displayed

by the control.

7 FontHeight
Gets or sets the height of the font of the

control.

8 ForeColor
Gets or sets the foreground color of the

control.

9 Lines
Gets or sets the lines of text in a text box

control.

10 Multiline
Gets or sets a value indicating whether this

is a multiline TextBox control.

11 PasswordChar

Gets or sets the character used to mask

characters of a password in a single-line

TextBox control.

12 ReadOnly
Gets or sets a value indicating whether text

in the text box is read-only.

13 ScrollBars

Gets or sets which scroll bars should appear

in a multiline TextBox control. This property

has values:

 None

 Horizontal

 Vertical

 VB.NET

 210

 Both

14 TabIndex
Gets or sets the tab order of the control

within its container.

15 Text Gets or sets the current text in the TextBox.

16 TextAlign

Gets or sets how text is aligned in a

TextBox control. This property has values:

 Left

 Right

 Center

17 TextLength Gets the length of text in the control.

18 WordWrap

Indicates whether a multiline text box

control automatically wraps words to the

beginning of the next line when necessary.

The Methods of the TextBox Control

The following are some of the commonly used methods of the TextBox control:

S.N Method Name & Description

1 AppendText

Appends text to the current text of a text box.

2 Clear

Clears all text from the text box control.

3 Copy

Copies the current selection in the text box to the Clipboard.

4 Cut

Moves the current selection in the text box to the Clipboard.

5 Paste

 VB.NET

 211

Replaces the current selection in the text box with the contents of

the Clipboard.

6 Paste(String)

Sets the selected text to the specified text without clearing the undo

buffer.

7 ResetText

Resets the Text property to its default value.

8 ToString

Returns a string that represents the TextBoxBase control.

9 Undo

Undoes the last edit operation in the text box.

Events of the TextBox Control

The following are some of the commonly used events of the Text control:

S.N Event Description

1 Click Occurs when the control is clicked.

2 DoubleClick Occurs when the control is double-clicked.

3 TextAlignChanged Occurs when the TextAlign property value changes.

Example

In this example, we create three text boxes and use the Click event of a button to

display the entered text using a message box. Take the following steps:

 Drag and drop three Label controls and three TextBox controls on the form.

 Change the texts on the labels to: Name, Organization and Comments,

respectively.

 Change the names of the text boxes to txtName, txtOrg and txtComment,

respectively.

 VB.NET

 212

 Drag and drop a button control on the form. Set its name to btnMessage

and its text property to 'Send Message'.

 Click the button to add the Click event in the code window and add the

following code.

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) _

 Handles MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspont.com"

 End Sub

 Private Sub btnMessage_Click(sender As Object, e As EventArgs) _

 Handles btnMessage.Click

 MessageBox.Show("Thank you " + txtName.Text + " from " +
txtOrg.Text)

 End Sub

End Class

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

 VB.NET

 213

Clicking the Send Message button would show the following message box:

Label Control

The Label control represents a standard Windows label. It is generally used to

display some informative text on the GUI which is not changed during runtime.

Let's create a label by dragging a Label control from the Toolbox and dropping it

on the form.

Properties of the Label Control

The following are some of the commonly used properties of the Label control:

S.N Property Description

1 Autosize Gets or sets a value specifying if the control should

be automatically resized to display all its contents.

 VB.NET

 214

2 BorderStyle Gets or sets the border style for the control.

3 FlatStyle Gets or sets the flat style appearance of the Label

control

4 Font Gets or sets the font of the text displayed by the

control.

5 FontHeight Gets or sets the height of the font of the control.

6 ForeColor Gets or sets the foreground color of the control.

7 PreferredHeight Gets the preferred height of the control.

8 PreferredWidth Gets the preferred width of the control.

9 TabStop Gets or sets a value indicating whether the user can

tab to the Label. This property is not used by this

class.

10 Text Gets or sets the text associated with this control.

11 TextAlign Gets or sets the alignment of text in the label.

Methods of the Label Control

The following are some of the commonly used methods of the Label control:

S.N Method Name & Description

1 GetPreferredSize

Retrieves the size of a rectangular area into which a control can be fitted.

2 Refresh

 VB.NET

 215

Forces the control to invalidate its client area and immediately redraw

itself and any child controls.

3 Select

Activates the control.

4 Show

Displays the control to the user.

5 ToString

Returns a String that contains the name of the control.

Events of the Label Control

The following are some of the commonly used events of the Label control:

S.N Event Description

1 AutoSizeChanged Occurs when the value of the AutoSize property

changes.

2 Click Occurs when the control is clicked.

3 DoubleClick Occurs when the control is double-clicked.

4 GotFocus Occurs when the control receives focus.

5 Leave Occurs when the input focus leaves the control.

6 LostFocus Occurs when the control loses focus.

7 TabIndexChanged Occurs when the TabIndex property value changes.

8 TabStopChanged Occurs when the TabStop property changes.

 VB.NET

 216

9 TextChanged Occurs when the Text property value changes.

Refer the Microsoft documentation for a detailed list of properties, methods and

events of the Label control.

Example

Following is an example, which shows how we can create two labels. Let us create

the first label from the designer view tab and set its properties from the properties

window. We will use the Click and the DoubleClick events of the label to move the

first label and change its text and create the second label and add it to the form,

respectively.

Take the following steps:

1. Drag and drop a Label control on the form.

2. Set the Text property to provide the caption "This is a Label Control".

3. Set the Font property from the properties window.

4. Click the label to add the Click event in the code window and add the

following codes.

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) _

 Handles MyBase.Load

 ' Create two buttons to use as the accept and cancel buttons.

 ' Set window width and height

 Me.Height = 300

 Me.Width = 560

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspont.com"

 ' Display a help button on the form.

 Me.HelpButton = True

 End Sub

 Private Sub Label1_Click(sender As Object, e As EventArgs) _

 Handles Label1.Click

 VB.NET

 217

 Label1.Location = New Point(50, 50)

 Label1.Text = "You have just moved the label"

 End Sub

 Private Sub Label1_DoubleClick(sender As Object, e As EventArgs)

 Handles Label1.DoubleClick

 Dim Label2 As New Label

 Label2.Text = "New Label"

 Label2.Location = New Point(Label1.Left, Label1.Height + _

 Label1.Top + 25)

 Me.Controls.Add(Label2)

 End Sub

End Class

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

Clicking and double clicking the label would produce the following effect:

 VB.NET

 218

Button Control

The Button control represents a standard Windows button. It is generally used to

generate a Click event by providing a handler for the Click event.

Let's create a label by dragging a Button control from the Toolbox ad dropping it

on the form.

Properties of the Button Control

The following are some of the commonly used properties of the Button control:

 VB.NET

 219

S.N Property Description

1 AutoSizeMode Gets or sets the mode by which the Button

automatically resizes itself.

2 BackColor Gets or sets the background color of the control.

3 BackgroundImage Gets or sets the background image displayed in the

control.

4 DialogResult Gets or sets a value that is returned to the parent

form when the button is clicked. This is used while

creating dialog boxes.

5 ForeColor Gets or sets the foreground color of the control.

6 Image Gets or sets the image that is displayed on a button

control.

7 Location Gets or sets the coordinates of the upper-left

corner of the control relative to the upper-left

corner of its container.

8 TabIndex Gets or sets the tab order of the control within its

container.

9 Text Gets or sets the text associated with this control.

Methods of the Button Control

The following are some of the commonly used methods of the Button control:

S.N Method Name & Description

 VB.NET

 220

1 GetPreferredSize

Retrieves the size of a rectangular area into which a control can be fitted.

2 NotifyDefault

Notifies the Button whether it is the default button so that it can adjust

its appearance accordingly.

3 Select

Activates the control.

4 ToString

Returns a String containing the name of the Component, if any. This

method should not be overridden.

Events of the Button Control

The following are some of the commonly used events of the Button control:

S.N Event Description

1 Click Occurs when the control is clicked.

2 DoubleClick Occurs when the user double-clicks the Button

control.

3 GotFocus Occurs when the control receives focus.

4 TabIndexChanged Occurs when the TabIndex property value changes.

5 TextChanged Occurs when the Text property value changes.

6 Validated Occurs when the control is finished validating.

Consult Microsoft documentation for detailed list of properties, methods and

events of the Button control.

Example

In the following example, we create three buttons. In this example, let us:

 VB.NET

 221

 Set captions for the buttons

 Set some image for the button

 Handle the click events of each buttons

Take following steps:

 Drag and drop a Label control on the form.

 Set the Text property to provide the caption "Tutorials Point".

 Drag and drop three buttons on the form.

 Using the properties window, change the Name properties of the buttons to

btnMoto, btnLogo and btnExit respectively.

 Using the properties window, change the Text properties of the buttons to

Show Moto, Show Logo and Exit respectively.

 Drag and Drop another button, using the properties window, set its Image

property and name it btnImage.

At this stage, the form looks like:

Click the form and add following code in the code editor:

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles

MyBase.Load

 VB.NET

 222

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspont.com"

 btnImage.Visible = False

 End Sub

 Private Sub btnMoto_Click(sender As Object, e As EventArgs) Handles

btnMoto.Click

 btnImage.Visible = False

 Label1.Text = "Simple Easy Learning"

 End Sub

 Private Sub btnExit_Click(sender As Object, e As EventArgs) Handles

btnExit.Click

 Application.Exit()

 End Sub

 Private Sub btnLogo_Click(sender As Object, e As EventArgs) Handles

btnLogo.Click

 Label1.Visible = False

 btnImage.Visible = True

 End Sub

End Class

Clicking the first button, displays:

Clicking the second button displays:

 VB.NET

 223

Clicking the third button, exits the application.

ListBox Control

The ListBox represents a Windows control to display a list of items to a user. A

user can select an item from the list. It allows the programmer to add items at

design time by using the properties window or at the runtime.

Let's create a list box by dragging a ListBox control from the Toolbox and dropping

it on the form.

 VB.NET

 224

You can populate the list box items either from the properties window or at

runtime. To add items to a ListBox, select the ListBox control and get to the

properties window, for the properties of this control. Click the ellipses (...) button

next to the Items property. This opens the String Collection Editor dialog box,

where you can enter the values one at a line.

Properties of the ListBox Control

The following are some of the commonly used properties of the ListBox control:

S.N Property Description

1 AllowSelection Gets a value indicating whether the ListBox

currently enables selection of list items.

2 BorderStyle Gets or sets the type of border drawn around the

list box.

3 ColumnWidth Gets of sets the width of columns in a multicolumn

list box.

4 HorizontalExtent Gets or sets the horizontal scrolling area of a list

box.

5 HorizontalScrollBar Gets or sets the value indicating whether a

horizontal scrollbar is displayed in the list box.

6 ItemHeight Gets or sets the height of an item in the list box.

7 Items Gets the items of the list box.

8 MultiColumn Gets or sets a value indicating whether the list box

supports multiple columns.

9 ScrollAlwaysVisible Gets or sets a value indicating whether the vertical

scroll bar is shown at all times.

 VB.NET

 225

10 SelectedIndex Gets or sets the zero-based index of the currently

selected item in a list box.

11 SelectedIndices Gets a collection that contains the zero-based

indexes of all currently selected items in the list

box.

12 SelectedItem Gets or sets the currently selected item in the list

box.

13 SelectedItems Gets a collection containing the currently selected

items in the list box.

14 SelectedValue Gets or sets the value of the member property

specified by the ValueMember property.

15 SelectionMode Gets or sets the method in which items are

selected in the list box. This property has values:

 None

 One

 MultiSimple

 MultiExtended

16 Sorted Gets or sets a value indicating whether the items

in the list box are sorted alphabetically.

17 Text Gets or searches for the text of the currently

selected item in the list box.

18 TopIndex Gets or sets the index of the first visible item of a

list box.

Methods of the ListBox Control

The following are some of the commonly used methods of the ListBox control:

 VB.NET

 226

S.N Method Name & Description

1 BeginUpdate

Prevents the control from drawing until the EndUpdate method is called,

while items are added to the ListBox one at a time.

2 ClearSelected

Unselects all items in the ListBox.

3 EndUpdate

Resumes drawing of a list box after it was turned off by the BeginUpdate

method.

4 FindString

Finds the first item in the ListBox that starts with the string specified as

an argument.

5 FindStringExact

Finds the first item in the ListBox that exactly matches the specified

string.

6 GetSelected

Returns a value indicating whether the specified item is selected.

7 SetSelected

Selects or clears the selection for the specified item in a ListBox.

8 OnSelectedIndexChanged

Raises the SelectedIndexChanged event.

8 OnSelectedValueChanged

Raises the SelectedValueChanged event.

Events of the ListBox Control

The following are some of the commonly used events of the ListBox control:

S.N Event Description

1 Click Occurs when a list box is selected.

 VB.NET

 227

2 SelectedIndexChanged
Occurs when the SelectedIndex property of a list

box is changed.

Consult Microsoft documentation for detailed list of properties, methods, and

events of the ListBox control.

Example 1

In the following example, let us add a list box at design time and add items on it

at runtime.

Take the following steps:

Drag and drop two labels, a button and a ListBox control on the form.

Set the Text property of the first label to provide the caption "Choose your

favourite destination for higher studies".

Set the Text property of the second label to provide the caption "Destination".

The text on this label will change at runtime when the user selects an item

on the list.

Click the listbox and the button controls to add the following codes in the code

editor.

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles

MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspont.com"

 ListBox1.Items.Add("Canada")

 ListBox1.Items.Add("USA")

 ListBox1.Items.Add("UK")

 ListBox1.Items.Add("Japan")

 ListBox1.Items.Add("Russia")

 ListBox1.Items.Add("China")

 ListBox1.Items.Add("India")

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles

Button1.Click

 MsgBox("You have selected " + ListBox1.SelectedItem.ToString())

 VB.NET

 228

 End Sub

 Private Sub ListBox1_SelectedIndexChanged(sender As Object, e As

EventArgs)

 Handles ListBox1.SelectedIndexChanged

 Label2.Text = ListBox1.SelectedItem.ToString()

 End Sub

End Class

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

When the user chooses a destination, the text in the second label changes:

 VB.NET

 229

Clicking the Select button displays a message box with the user's choice:

Example 2

In this example, we will fill up a list box with items, retrieve the total number of

items in the list box, sort the list box, remove some items and clear the entire list

box.

Design the Form:

 VB.NET

 230

Add the following code in the code editor window:

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles

MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspont.com"

 ' creating multi-column and multiselect list box

 ListBox1.MultiColumn = True

 ListBox1.SelectionMode = SelectionMode.MultiExtended

 End Sub

 'populates the list

 Private Sub Button1_Click_1(sender As Object, e As EventArgs) _

 Handles Button1.Click

 ListBox1.Items.Add("Safety")

 ListBox1.Items.Add("Security")

 ListBox1.Items.Add("Governance")

 ListBox1.Items.Add("Good Music")

 ListBox1.Items.Add("Good Movies")

 ListBox1.Items.Add("Good Books")

 ListBox1.Items.Add("Education")

 ListBox1.Items.Add("Roads")

 ListBox1.Items.Add("Health")

 VB.NET

 231

 ListBox1.Items.Add("Food for all")

 ListBox1.Items.Add("Shelter for all")

 ListBox1.Items.Add("Industrialisation")

 ListBox1.Items.Add("Peace")

 ListBox1.Items.Add("Liberty")

 ListBox1.Items.Add("Freedom of Speech")

 End Sub

 'sorting the list

 Private Sub Button2_Click(sender As Object, e As EventArgs) _

 Handles Button2.Click

 ListBox1.Sorted = True

 End Sub

 'clears the list

 Private Sub Button3_Click(sender As Object, e As EventArgs) _

 Handles Button3.Click

 ListBox1.Items.Clear()

 End Sub

 'removing the selected item

 Private Sub Button4_Click(sender As Object, e As EventArgs) _

 Handles Button4.Click

 ListBox1.Items.Remove(ListBox1.SelectedItem.ToString)

 End Sub

 'counting the numer of items

 Private Sub Button5_Click(sender As Object, e As EventArgs) _

 Handles Button5.Click

 Label1.Text = ListBox1.Items.Count

 End Sub

 'displaying the selected item on the third label

 Private Sub ListBox1_SelectedIndexChanged(sender As Object, e As

EventArgs) _

 Handles ListBox1.SelectedIndexChanged

 Label3.Text = ListBox1.SelectedItem.ToString()

 End Sub

End Class

 VB.NET

 232

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

Fill the list and check workings of other buttons:

ComboBox Control

The ComboBox control is used to display a drop-down list of various items. It is a

combination of a text box in which the user enters an item and a drop-down list

from which the user selects an item.

Let's create a combo box by dragging a ComboBox control from the Toolbox and

dropping it on the form.

 VB.NET

 233

You can populate the list box items either from the properties window or at

runtime. To add items to a ListBox, select the ListBox control and go to the

properties window for the properties of this control. Click the ellipses (...) button

next to the Items property. This opens the String Collection Editor dialog box,

where you can enter the values one at a line.

Properties of the ComboBox Control

The following are some of the commonly used properties of the ComboBox control:

S.N Property Description

1 AllowSelection Gets a value indicating whether the

list enables selection of list items.

2 AutoCompleteCustomSource Gets or sets a custom

System.Collections.Specialized.StringC

ollection to use when the

AutoCompleteSourceproperty is set to

CustomSource.

 VB.NET

 234

3 AutoCompleteMode Gets or sets an option that controls

how automatic completion works for

the ComboBox.

4 AutoCompleteSource Gets or sets a value specifying the

source of complete strings used for

automatic completion.

5 DataBindings Gets the data bindings for the control.

6 DataManager Gets the CurrencyManager associated

with this control.

7 DataSource Gets or sets the data source for this

ComboBox.

8 DropDownHeight Gets or sets the height in pixels of the

drop-down portion of the ComboBox.

9 DropDownStyle Gets or sets a value specifying the

style of the combo box.

10 DropDownWidth Gets or sets the width of the of the

drop-down portion of a combo box.

11 DroppedDown Gets or sets a value indicating

whether the combo box is displaying

its drop-down portion.

12 FlatStyle Gets or sets the appearance of the

ComboBox.

13 ItemHeight Gets or sets the height of an item in

the combo box.

 VB.NET

 235

14 Items Gets an object representing the

collection of the items contained in

this ComboBox.

15 MaxDropDownItems Gets or sets the maximum number of

items to be displayed in the drop-

down part of the combo box.

16 MaxLength Gets or sets the maximum number of

characters a user can enter in the

editable area of the combo box.

17 SelectedIndex Gets or sets the index specifying the

currently selected item.

18 SelectedItem Gets or sets currently selected item in

the ComboBox.

19 SelectedText Gets or sets the text that is selected in

the editable portion of a ComboBox.

20 SelectedValue Gets or sets the value of the member

property specified by the

ValueMember property.

21 SelectionLength Gets or sets the number of characters

selected in the editable portion of the

combo box.

22 SelectionStart Gets or sets the starting index of text

selected in the combo box.

23 Sorted Gets or sets a value indicating

whether the items in the combo box

are sorted.

 VB.NET

 236

24 Text Gets or sets the text associated with

this control.

Methods of the ComboBox Control

The following are some of the commonly used methods of the ComboBox control:

S.N Method Name & Description

1 BeginUpdate

Prevents the control from drawing until the EndUpdate method is called,

while items are added to the combo box one at a time.

2 EndUpdate

Resumes drawing of a combo box, after it was turned off by the

BeginUpdate method.

3 FindString

Finds the first item in the combo box that starts with the string specified

as an argument.

4 FindStringExact

Finds the first item in the combo box that exactly matches the specified

string.

5 SelectAll

Selects all the text in the editable area of the combo box.

Events of the ComboBox Control

The following are some of the commonly used events of the ComboBox control:

 VB.NET

 237

S.N Event Description

1 DropDown Occurs when the drop-down portion of a

combo box is displayed.

2 DropDownClosed Occurs when the drop-down portion of a

combo box is no longer visible.

3 DropDownStyleChanged Occurs when the DropDownStyle

property of the ComboBox has changed.

4 SelectedIndexChanged Occurs when the SelectedIndex property

of a ComboBox control has changed.

5 SelectionChangeCommitted Occurs when the selected item has

changed and the change appears in the

combo box.

Example

In this example, let us fill a combo box with various items, get the selected items

in the combo box and show them in a list box and sort the items.

Drag and drop a combo box to store the items, a list box to display the selected

items, four button controls to add to the list box with selected items, to fill the

combo box, to sort the items and to clear the combo box list, respectively.

Add a label control that would display the selected item.

 VB.NET

 238

Add the following code in the code editor window:

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles

MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspont.com"

 End Sub

 'sends the selected items to the list box

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles

Button1.Click

 If ComboBox1.SelectedIndex > -1 Then

 Dim sindex As Integer

 sindex = ComboBox1.SelectedIndex

 Dim sitem As Object

 sitem = ComboBox1.SelectedItem

 ListBox1.Items.Add(sitem)

 End If

 End Sub

 'populates the list

 Private Sub Button2_Click(sender As Object, e As EventArgs) Handles

Button2.Click

 VB.NET

 239

 ComboBox1.Items.Clear()

 ComboBox1.Items.Add("Safety")

 ComboBox1.Items.Add("Security")

 ComboBox1.Items.Add("Governance")

 ComboBox1.Items.Add("Good Music")

 ComboBox1.Items.Add("Good Movies")

 ComboBox1.Items.Add("Good Books")

 ComboBox1.Items.Add("Education")

 ComboBox1.Items.Add("Roads")

 ComboBox1.Items.Add("Health")

 ComboBox1.Items.Add("Food for all")

 ComboBox1.Items.Add("Shelter for all")

 ComboBox1.Items.Add("Industrialisation")

 ComboBox1.Items.Add("Peace")

 ComboBox1.Items.Add("Liberty")

 ComboBox1.Items.Add("Freedom of Speech")

 ComboBox1.Text = "Select from..."

 End Sub

 'sorting the list

 Private Sub Button3_Click(sender As Object, e As EventArgs)

 ComboBox1.Sorted = True

 End Sub

 'clears the list

 Private Sub Button4_Click(sender As Object, e As EventArgs)

 ComboBox1.Items.Clear()

 End Sub

 'displaying the selected item on the label

 Private Sub ComboBox1_SelectedIndexChanged(sender As Object, e As

EventArgs) _

 Handles ListBox1.SelectedIndexChanged

 Label1.Text = ComboBox1.SelectedItem.ToString()

 End Sub

End Class

 VB.NET

 240

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

Click on various buttons to check the actions performed by each:

RadioButton Control

The RadioButton control is used to provide a set of mutually exclusive options.

The user can select one radio button in a group. If you need to place more than

one group of radio buttons in the same form, you should place them in different

container controls like a GroupBox control.

 VB.NET

 241

Let's create three radio buttons by dragging RadioButton controls from the Toolbox

and dropping on the form.

The Checked property of the radio button is used to set the state of a radio button.

You can display text, image or both on radio button control. You can also change

the appearance of the radio button control by using the Appearance property.

Properties of the RadioButton Control

The following are some of the commonly used properties of the RadioButton

control:

S.N Property Description

1 Appearance Gets or sets a value determining the appearance of

the radio button.

2 AutoCheck Gets or sets a value indicating whether the Checked

value and the appearance of the control automatically

change when the control is clicked.

3 CheckAlign Gets or sets the location of the check box portion of

the radio button.

4 Checked Gets or sets a value indicating whether the control is

checked.

 VB.NET

 242

5 Text Gets or sets the caption for a radio button.

6 TabStop Gets or sets a value indicating whether a user can

give focus to the RadioButton control using the TAB

key.

Methods of the RadioButton Control

The following are some of the commonly used methods of the RadioButton control:

S.N Method Name & Description

1 PerformClick

Generates a Click event for the control, simulating a click by a user.

Events of the RadioButton Control

The following are some of the commonly used events of the RadioButton control:

S.N Event Description

1 AppearanceChanged Occurs when the value of the Appearance

property of the RadioButton control is changed.

2 CheckedChanged Occurs when the value of the Checked property

of the RadioButton control is changed.

Consult Microsoft documentation for detailed list of properties, methods and

events of the RadioButton control.

Example

In the following example, let us create two groups of radio buttons and use their

CheckedChanged events for changing the BackColor and ForeColor property of the

form.

 VB.NET

 243

Let's double click on the radio buttons and put the follow code in the opened

window.

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles
MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspont.com"

 End Sub

 Private Sub RadioButton1_CheckedChanged(sender As Object, _

 e As EventArgs) Handles RadioButton1.CheckedChanged

 Me.BackColor = Color.Red

 End Sub

 Private Sub RadioButton2_CheckedChanged(sender As Object, _

 e As EventArgs) Handles RadioButton2.CheckedChanged

 Me.BackColor = Color.Green

 End Sub

 Private Sub RadioButton3_CheckedChanged(sender As Object, _

 e As EventArgs) Handles RadioButton3.CheckedChanged

 Me.BackColor = Color.Blue

 End Sub

 Private Sub RadioButton4_CheckedChanged(sender As Object, _

 VB.NET

 244

 e As EventArgs) Handles RadioButton4.CheckedChanged

 Me.ForeColor = Color.Black

 End Sub

 Private Sub RadioButton5_CheckedChanged(sender As Object, _

 e As EventArgs) Handles RadioButton5.CheckedChanged

 Me.ForeColor = Color.White

 End Sub

 Private Sub RadioButton6_CheckedChanged(sender As Object, _

 e As EventArgs) Handles RadioButton6.CheckedChanged

 Me.ForeColor = Color.Red

 End Sub

End Class

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

CheckBox Control

The CheckBox control allows the user to set true/false or yes/no type options. The

user can select or deselect it. When a check box is selected it has the value True,

and when it is cleared, it holds the value False.

Let's create two check boxes by dragging CheckBox controls from the Toolbox and

dropping on the form.

 VB.NET

 245

The CheckBox control has three states, checked, unchecked and

indeterminate. In the indeterminate state, the check box is grayed out. To

enable the indeterminate state, theThreeState property of the check box is set to

be True.

Properties of the CheckBox Control

The following are some of the commonly used properties of the CheckBox control:

S.N Property Description

1 Appearance Gets or sets a value determining the appearance of

the check box.

2 AutoCheck Gets or sets a value indicating whether the Checked

or CheckedState value and the appearance of the

control automatically change when the check box is

selected.

3 CheckAlign Gets or sets the horizontal and vertical alignment of

the check mark on the check box.

4 Checked Gets or sets a value indicating whether the check box

is selected.

 VB.NET

 246

5 CheckState Gets or sets the state of a check box.

6 Text Gets or sets the caption of a check box.

7 ThreeState Gets or sets a value indicating whether or not a check

box should allow three check states rather than two.

Methods of the CheckBox Control

The following are some of the commonly used methods of the CheckBox control:

S.N Method Name & Description

1 OnCheckedChanged

Raises the CheckedChanged event.

2 OnCheckStateChanged

Raises the CheckStateChanged event.

3 OnClick

Raises the OnClick event.

Events of the CheckBox Control

The following are some of the commonly used events of the CheckBox control:

S.N Event Description

1 AppearanceChanged Occurs when the value of the Appearance

property of the check box is changed.

2 CheckedChanged Occurs when the value of the Checked property

of the CheckBox control is changed.

3 CheckStateChanged Occurs when the value of the CheckState

property of the CheckBox control is changed.

Consult Microsoft documentation for detailed list of properties, methods and

events of the CheckBox control.

 VB.NET

 247

Example

In this example, let us add four check boxes in a group box. The check boxes will

allow the users to choose the source from which they came to know about the

organization. If the user chooses the check box with text "others", then the user

is asked to specify and a text box is provided to give input. When the user clicks

the Submit button, he/she gets an appropriate message.

The form in design view:

Let's put the following code in the code editor window:

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) _

 Handles MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 Label1.Visible = False

 TextBox1.Visible = False

 TextBox1.Multiline = True

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) _

 Handles Button1.Click

 Dim str As String

 str = " "

 If CheckBox1.Checked = True Then

 str &= CheckBox1.Text

 VB.NET

 248

 str &= " "

 End If

 If CheckBox2.Checked = True Then

 str &= CheckBox2.Text

 str &= " "

 End If

 If CheckBox3.Checked = True Then

 str &= CheckBox3.Text

 str &= " "

 End If

 If CheckBox4.Checked = True Then

 str &= TextBox1.Text

 str &= " "

 End If

 If str <> Nothing Then

 MsgBox(str + vbLf + "Thank you")

 End If

 End Sub

 Private Sub CheckBox4_CheckedChanged(sender As Object, _

 e As EventArgs) Handles CheckBox4.CheckedChanged

 Label1.Visible = True

 TextBox1.Visible = True

 End Sub

End Class

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

 VB.NET

 249

Checking all the boxes:

Clicking the Submit button:

 VB.NET

 250

PictureBox Control

The PictureBox control is used for displaying images on the form. The Image

property of the control allows you to set an image both at design time or at run

time.

Let's create a picture box by dragging a PictureBox control from the Toolbox and

dropping it on the form.

Properties of the PictureBox Control

The following are some of the commonly used properties of the PictureBox control:

S.N Property Description

1 AllowDrop
Specifies whether the picture box accepts data that a

user drags on it.

2 ErrorImage

Gets or specifies an image to be displayed when an

error occurs during the image-loading process or if

the image load is cancelled.

3 Image Gets or sets the image that is displayed in the control.

 VB.NET

 251

4 ImageLocation
Gets or sets the path or the URL for the image

displayed in the control.

5 InitialImage
Gets or sets the image displayed in the control when

the main image is loaded

6 SizeMode

Determines the size of the image to be displayed in

the control. This property takes its value from the

PictureBoxSizeMode enumeration, which has values:

 Normal - the upper left corner of the image is

placed at upper left part of the picture box

 StrechImage - allows stretching of the

image

 AutoSize - allows resizing the picture box to

the size of the image

 CenterImage - allows centering the image in

the picture box

 Zoom - allows increasing or decreasing the

image size to maintain the size ratio.

7 TabIndex Gets or sets the tab index value.

8 TabStop
Specifies whether the user will be able to focus on the

picture box by using the TAB key.

9 Text Gets or sets the text for the picture box.

10 WaitOnLoad
Specifies whether or not an image is loaded

synchronously.

 VB.NET

 252

Methods of the PictureBox Control

The following are some of the commonly used methods of the PictureBox control:

S.N Method Name & Description

1 CancelAsync

Cancels an asynchronous image load.

2 Load

Displays an image in the picture box

3 LoadAsync

Loads image asynchronously.

4 ToString

Returns the string that represents the current picture box.

Events of the PictureBox Control

The following are some of the commonly used events of the PictureBox control:

S.N Event Description

1 CausesValidationChanged Overrides the

Control.CausesValidationChanged

property.

2 Click Occurs when the control is clicked.

3 Enter Overrides the Control.Enter property.

4 FontChanged Occurs when the value of the Font property

changes.

5 ForeColorChanged Occurs when the value of the ForeColor

property changes.

6 KeyDown Occurs when a key is pressed when the

control has focus.

 VB.NET

 253

7 KeyPress Occurs when a key is pressed when the

control has focus.

8 KeyUp Occurs when a key is released when the

control has focus.

9 Leave Occurs when input focus leaves the

PictureBox.

10 LoadCompleted Occurs when the asynchronous image-load

operation is completed, been canceled, or

raised an exception.

11 LoadProgressChanged Occurs when the progress of an

asynchronous image-loading operation has

changed.

12 Resize Occurs when the control is resized.

13 RightToLeftChanged Occurs when the value of the RightToLeft

property changes.

14 SizeChanged Occurs when the Size property value

changes.

15 SizeModeChanged Occurs when SizeMode changes.

16 TabIndexChanged Occurs when the value of the TabIndex

property changes.

17 TabStopChanged Occurs when the value of the TabStop

property changes.

18 TextChanged Occurs when the value of the Text property

changes.

Example

In this example, let us put a picture box and a button control on the form. We set

the image property of the picture box to logo.png, as we used before. The Click

 VB.NET

 254

event of the button named Button1 is coded to stretch the image to a specified

size:

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles

MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles

Button1.Click

 PictureBox1.ClientSize = New Size(300, 300)

 PictureBox1.SizeMode = PictureBoxSizeMode.StretchImage

 End Sub

End Class

Design View:

 VB.NET

 255

When the application is executed, it displays:

Clicking on the button results in:

 VB.NET

 256

ProgressBar Control

It represents a Windows progress bar control. It is used to provide visual feedback

to your users about the status of some task. It shows a bar that fills in from left

to right as the operation progresses.

Let's click on a ProgressBar control from the Toolbox and place it on the form.

The main properties of a progress bar are Value, Maximum and Minimum. The

Minimum and Maximum properties are used to set the minimum and maximum

values that the progress bar can display. The Value property specifies the current

position of the progress bar.

The ProgressBar control is typically used when an application performs tasks such

as copying files or printing documents. To a user the application might look

unresponsive if there is no visual cue. In such cases, using the ProgressBar allows

the programmer to provide a visual status of progress.

Properties of the ProgressBar Control

The following are some of the commonly used properties of the ProgressBar

control:

S.N Property Description

1 AllowDrop Overrides Control.AllowDrop.

2 BackgroundImage Gets or sets the background image for the

ProgressBar control.

 VB.NET

 257

3 BackgroundImageLayout Gets or sets the layout of the background

image of the progress bar.

4 CausesValidation Gets or sets a value indicating whether the

control, when it receives focus, causes

validation to be performed on any controls

that require validation.

5 Font Gets or sets the font of text in the

ProgressBar.

6 ImeMode Gets or sets the input method editor (IME)

for the ProgressBar.

7 ImeModeBase Gets or sets the IME mode of a control.

8 MarqueeAnimationSpeed Gets or sets the time period, in

milliseconds, that it takes the progress

block to scroll across the progress bar.

9 Maximum Gets or sets the maximum value of the

range of the control.

10 Minimum Gets or sets the minimum value of the

range of the control.

11 Padding Gets or sets the space between the edges

of a ProgressBar control and its contents.

12 RightToLeftLayout Gets or sets a value indicating whether the

ProgressBar and any text it contains is

displayed from right to left.

13 Step Gets or sets the amount by which a call to

the PerformStep method increases the

current position of the progress bar.

14 Style Gets or sets the manner in which progress

should be indicated on the progress bar.

 VB.NET

 258

15 Value Gets or sets the current position of the

progress bar.

Methods of the ProgressBar Control

The following are some of the commonly used methods of the ProgressBar control:

S.N Method Name & Description

1 Increment

Increments the current position of the ProgressBar control by specified

amount.

2 PerformStep

Increments the value by the specified step.

3 ResetText

Resets the Text property to its default value.

4 ToString

Returns a string that represents the progress bar control.

Events of the ProgressBar Control

The following are some of the commonly used events of the ProgressBar control:

S.N Event Description

1 BackgroundImageChanged Occurs when the value of the

BackgroundImage property changes.

2 BackgroundImageLayoutCha

nged

Occurs when the value of the

BackgroundImageLayout property

changes.

3 CausesValidationChanged Occurs when the value of the

CausesValidation property changes.

 VB.NET

 259

4 Click Occurs when the control is clicked.

5 DoubleClick Occurs when the user double-clicks

the control.

6 Enter Occurs when focus enters the control.

7 FontChanged Occurs when the value of the Font

property changes.

8 ImeModeChanged Occurs when the value of the

ImeMode property changes.

9 KeyDown Occurs when the user presses a key

while the control has focus.

10 KeyPress Occurs when the user presses a key

while the control has focus.

11 KeyUp Occurs when the user releases a key

while the control has focus.

12 Leave Occurs when focus leaves the

ProgressBar control.

13 MouseClick Occurs when the control is clicked by

the mouse.

14 MouseDoubleClick Occurs when the user double-clicks

the control.

15 PaddingChanged Occurs when the value of the Padding

property changes.

16 Paint Occurs when the ProgressBar is

drawn.

17 RightToLeftLayoutChanged Occurs when the RightToLeftLayout

property changes.

 VB.NET

 260

18 TabStopChanged Occurs when the TabStop property

changes.

18 TextChanged Occurs when the Text property

changes.

Example

In this example, let us create a progress bar at runtime. Let's double click on the

Form and put the follow code in the opened window.

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) _

 Handles MyBase.Load

 'create two progress bars

 Dim ProgressBar1 As ProgressBar

 Dim ProgressBar2 As ProgressBar

 ProgressBar1 = New ProgressBar()

 ProgressBar2 = New ProgressBar()

 'set position

 ProgressBar1.Location = New Point(10, 10)

 ProgressBar2.Location = New Point(10, 50)

 'set values

 ProgressBar1.Minimum = 0

 ProgressBar1.Maximum = 200

 ProgressBar1.Value = 130

 ProgressBar2.Minimum = 0

 ProgressBar2.Maximum = 100

 ProgressBar2.Value = 40

 'add the progress bar to the form

 Me.Controls.Add(ProgressBar1)

 Me.Controls.Add(ProgressBar2)

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 End Sub

End Class

 VB.NET

 261

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

ScrollBar Control

The ScrollBar controls display vertical and horizontal scroll bars on the form. This

is used for navigating through large amount of information. There are two types

of scroll bar controls: HScrollBar for horizontal scroll bars and VScrollBar for

vertical scroll bars. These are used independently from each other.

Let's click on HScrollBar control and VScrollBar control from the Toolbox and place

them on the form.

 VB.NET

 262

Properties of the ScrollBar Control

The following are some of the commonly used properties of the ScrollBar control:

S.N Property Description

1 AutoSize Gets or sets a value indicating whether the ScrollBar

is automatically resized to fit its contents.

2 BackColor Gets or sets the background color for the control.

3 ForeColor Gets or sets the foreground color of the scroll bar

control.

4 ImeMode Gets or sets the Input Method Editor (IME) mode

supported by this control.

5 LargeChange Gets or sets a value to be added to or subtracted from

the Value property when the scroll box is moved a

large distance.

6 Maximum Gets or sets the upper limit of values of the scrollable

range.

7 Minimum Gets or sets the lower limit of values of the scrollable

range.

8 SmallChange Gets or sets the value to be added to or subtracted

from the Value property when the scroll box is moved

a small distance.

9 Value Gets or sets a numeric value that represents the

current position of the scroll box on the scroll bar

control.

 VB.NET

 263

Methods of the ScrollBar Control

The following are some of the commonly used methods of the ScrollBar control:

S.N Method Name & Description

1 OnClick

Generates the Click event.

2 Select

Activates the control.

Events of the ScrollBar Control

The following are some of the commonly used events of the ScrollBar control:

S.N Event Description

1 Click Occurs when the control is clicked.

2 DoubleClick Occurs when the user double-clicks the control.

3 Scroll Occurs when the control is moved.

4 ValueChanged Occurs when the Value property changes, either by

handling the Scroll event or programmatically.

Example

In this example, let us create two scroll bars at runtime. Let's double click on the

Form and put the follow code in the opened window.

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) _

 Handles MyBase.Load

 'create two scroll bars

 Dim hs As HScrollBar

 Dim vs As VScrollBar

 hs = New HScrollBar()

 VB.NET

 264

 vs = New VScrollBar()

 'set properties

 hs.Location = New Point(10, 200)

 hs.Size = New Size(175, 15)

 hs.Value = 50

 vs.Location = New Point(200, 30)

 vs.Size = New Size(15, 175)

 hs.Value = 50

 'adding the scroll bars to the form

 Me.Controls.Add(hs)

 Me.Controls.Add(vs)

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 End Sub

End Class

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

DateTimePicker Control

The DateTimePicker control allows selecting a date and time by editing the

displayed values in the control. If you click the arrow in the DateTimePicker

control, it displays a month calendar, like a combo box control. The user can make

selection by clicking the required date. The new selected value appears in the text

box part of the control.

 VB.NET

 265

The MinDate and the MaxDate properties allow you to put limits on the date

range.

Properties of the DateTimePicker Control

The following are some of the commonly used properties of the DateTimePicker

control:

S.N Property Description

1 BackColor Gets or sets a value indicating the

background color of the DateTimePicker

control.

2 BackgroundImage Gets or sets the background image for

the control.

3 BackgroundImageLayout Gets or sets the layout of the background

image of the DateTimePicker control.

4 CalendarFont Gets or sets the font style applied to the

calendar.

5 CalendarForeColor Gets or sets the foreground color of the

calendar.

 VB.NET

 266

6 CalendarMonthBackground Gets or sets the background color of the

calendar month.

7 CalendarTitleBackColor Gets or sets the background color of the

calendar title.

8 CalendarTitleForeColor Gets or sets the foreground color of the

calendar title.

9 CalendarTrailingForeColor Gets or sets the foreground color of the

calendar trailing dates.

10 Checked Gets or sets a value indicating whether

the Value property has been set with a

valid date/time value and the displayed

value is able to be updated.

11 CustomFormat Gets or sets the custom date/time format

string.

12 DropDownAlign Gets or sets the alignment of the drop-

down calendar on the DateTimePicker

control.

13 ForeColor Gets or sets the foreground color of the

DateTimePicker control.

14 Format Gets or sets the format of the date and

time displayed in the control.

15 MaxDate Gets or sets the maximum date and time

that can be selected in the control.

16 MaximumDateTime Gets the maximum date value allowed for

the DateTimePicker control.

17 MinDate Gets or sets the minimum date and time

that can be selected in the control.

18 MinimumDateTime Gets the minimum date value allowed for

the DateTimePicker control.

 VB.NET

 267

19 PreferredHeight Gets the preferred height of the

DateTimePicker control.

20 RightToLeftLayout Gets or sets whether the contents of the

DateTimePicker are laid out from right to

left.

21 ShowCheckBox Gets or sets a value indicating whether a

check box is displayed to the left of the

selected date.

22 ShowUpDown Gets or sets a value indicating whether a

spin button control (also known as an up-

down control) is used to adjust the

date/time value.

23 Text Gets or sets the text associated with this

control.

24 Value Gets or sets the date/time value assigned

to the control.

Methods of the DateTimePicker Control

The following are some of the commonly used methods of the DateTimePicker

control:

S.N Method Name & Description

1 ToString

Returns the string representing the control.

Events of the DateTimePicker Control

The following are some of the commonly used events of the DateTimePicker

control:

S.N Event Description

1 BackColorChanged Occurs when the value of the

BackColor property changes.

 VB.NET

 268

2 BackgroundImageChanged Occurs when the value of the

BackgroundImage property

changes.

3 BackgroundImageLayoutChanged Occurs when the value of the

BackgroundImageLayout

property changes.

4 Click Occurs when the control is

clicked.

5 CloseUp Occurs when the drop-down

calendar is dismissed and

disappears.

6 DoubleClick Occurs when the control is

double-clicked.

7 DragDrop Occurs when a drag-and-drop

operation is completed.

8 ForeColorChanged Occurs when the value of the

ForeColor property changes.

9 FormatChanged Occurs when the Format property

value has changed.

10 MouseClick Occurs when the control is clicked

with the mouse.

11 MouseDoubleClick Occurs when the control is

double-clicked with the mouse.

12 PaddingChanged Occurs when the value of the

Padding property changes.

13 Paint Occurs when the control is

redrawn.

 VB.NET

 269

14 RightToLeftLayoutChanged Occurs when the

RightToLeftLayout property

changes.

15 TextChanged Occurs when the value of the Text

property changes.

16 ValueChanged Occurs when the Value property

changes.

Example

In this example, let us create a small application for calculating days of leave. Let

us add two DateTimePicker controls on the form, where the user will enter the

date of going on leave and the date of joining. Let us keep a button control for

performing the calculation and appropriate label controls for displaying

information.

The form in design view:

Add the following code in the code editor window:

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles

MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles

Button1.Click

 VB.NET

 270

 Dim d1 As DateTime = DateTimePicker1.Value

 Dim d2 As DateTime = DateTimePicker2.Value

 Dim result As TimeSpan = d1.Subtract(d2)

 Dim days As Integer = result.TotalDays

 Label3.Text = days

 End Sub

End Class

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

Select two dates and click on the button for leave calculation:

TreeView Control

The TreeView control is used to display hierarchical representations of items

similar to the ways the files and folders are displayed in the left pane of the

Windows Explorer. Each node may contain one or more child nodes.

 VB.NET

 271

Let's click on a TreeView control from the Toolbox and place it on the form.

Properties of the TreeView Control

The following are some of the commonly used properties of the TreeView control:

S.N Property Description

1 BackColor Gets or sets the background color for the

control.

2 BackgroundImage Gets or set the background image for the

TreeView control.

3 BackgroundImageLayout Gets or sets the layout of the background

image for the TreeView control.

4 BorderStyle Gets or sets the border style of the tree

view control.

5 CheckBoxes Gets or sets a value indicating whether

check boxes are displayed next to the tree

nodes in the tree view control.

 VB.NET

 272

6 DataBindings Gets the data bindings for the control.

7 Font Gets or sets the font of the text displayed

by the control.

8 FontHeight Gets or sets the height of the font of the

control.

9 ForeColor The current foreground color for this

control, which is the color the control uses

to draw its text.

10 ItemHeight Gets or sets the height of each tree node in

the tree view control.

11 Nodes Gets the collection of tree nodes that are

assigned to the tree view control.

12 PathSeparator Gets or sets the delimiter string that the

tree node path uses.

13 RightToLeftLayout Gets or sets a value that indicates whether

the TreeView should be laid out from right-

to-left.

14 Scrollable Gets or sets a value indicating whether the

tree view control displays scroll bars when

they are needed.

15 SelectedImageIndex Gets or sets the image list index value of

the image that is displayed when a tree

node is selected.

16 SelectedImageKey Gets or sets the key of the default image

shown when a TreeNode is in a selected

state.

17 SelectedNode Gets or sets the tree node that is currently

selected in the tree view control.

 VB.NET

 273

18 ShowLines Gets or sets a value indicating whether lines

are drawn between tree nodes in the tree

view control.

19 ShowNodeToolTips Gets or sets a value indicating ToolTips are

shown when the mouse pointer hovers over

a TreeNode.

20 ShowPlusMinus Gets or sets a value indicating whether

plus-sign (+) and minus-sign (-) buttons

are displayed next to tree nodes that

contain child tree nodes.

21 ShowRootLines Gets or sets a value indicating whether lines

are drawn between the tree nodes that are

at the root of the tree view.

22 Sorted Gets or sets a value indicating whether the

tree nodes in the tree view are sorted.

23 StateImageList Gets or sets the image list that is used to

indicate the state of the TreeView and its

nodes.

24 Text Gets or sets the text of the TreeView.

25 TopNode Gets or sets the first fully-visible tree node

in the tree view control.

26 TreeViewNodeSorter Gets or sets the implementation of

IComparer to perform a custom sort of the

TreeView nodes.

27 VisibleCount Gets the number of tree nodes that can be

fully visible in the tree view control.

Methods of the TreeView Control

The following are some of the commonly used methods of the TreeView control:

 VB.NET

 274

S.N Method Name & Description

1 CollapseAll

Collapses all the nodes including all child nodes in the tree view control.

2 ExpandAll

Expands all the nodes.

3 GetNodeAt

Gets the node at the specified location.

4 GetNodeCount

Gets the number of tree nodes.

5 Sort

Sorts all the items in the tree view control.

6 ToString

Returns a string containing the name of the control.

Events of the TreeView Control

The following are some of the commonly used events of the TreeView control:

S.N Event Description

1 AfterCheck Occurs after the tree node check box is checked.

2 AfterCollapse Occurs after the tree node is collapsed.

3 AfterExpand Occurs after the tree node is expanded.

4 AfterSelect Occurs after the tree node is selected.

5 BeforeCheck Occurs before the tree node check box is checked.

6 BeforeCollapse Occurs before the tree node is collapsed.

7 BeforeExpand Occurs before the tree node is expanded.

 VB.NET

 275

8 BeforeLabelEdit Occurs before the tree node label text is edited.

9 BeforeSelect Occurs before the tree node is selected.

10 ItemDrag Occurs when the user begins dragging a node.

11 NodeMouseClick Occurs when the user clicks a TreeNode with the

mouse.

12 NodeMouseDou

bleClick

Occurs when the user double-clicks a TreeNode

with the mouse.

13 NodeMouseHove

r

Occurs when the mouse hovers over a TreeNode.

14 PaddingChange

d

Occurs when the value of the Padding property

changes.

15 Paint Occurs when the TreeView is drawn.

16 RightToLeftLayo

utChanged

Occurs when the value of the RightToLeftLayout

property changes.

17 TextChanged Occurs when the Text property changes.

The TreeNode Class

The TreeNode class represents a node of a TreeView. Each node in a TreeView

control is an object of the TreeNode class. To be able to use a TreeView control

we need to have a look at some commonly used properties and methods of the

TreeNode class.

Properties of the TreeNode Class

The following are some of the commonly used properties of the TreeNode class:

S.N Property Description

1 BackColor Gets or sets the background color of the tree node.

 VB.NET

 276

2 Checked Gets or sets a value indicating whether the tree

node is in a checked state.

3 ContextMenu Gets the shortcut menu that is associated with this

tree node.

4 ContextMenuStrip Gets or sets the shortcut menu associated with this

tree node.

5 FirstNode Gets the first child tree node in the tree node

collection.

6 FullPath Gets the path from the root tree node to the current

tree node.

7 Index Gets the position of the tree node in the tree node

collection.

8 IsEditing Gets a value indicating whether the tree node is in

an editable state.

9 IsExpanded Gets a value indicating whether the tree node is in

the expanded state.

10 IsSelected Gets a value indicating whether the tree node is in

the selected state.

11 IsVisible Gets a value indicating whether the tree node is

visible or partially visible.

12 LastNode Gets the last child tree node.

13 Level Gets the zero-based depth of the tree node in the

TreeView control.

14 Name Gets or sets the name of the tree node.

15 NextNode Gets the next sibling tree node.

 VB.NET

 277

16 Nodes Gets the collection of TreeNode objects assigned to

the current tree node.

17 Parent Gets the parent tree node of the current tree node.

18 PrevNode Gets the previous sibling tree node.

19 PrevVisibleNode Gets the previous visible tree node.

20 Tag Gets or sets the object that contains data about the

tree node.

21 Text Gets or sets the text displayed in the label of the

tree node.

22 ToolTipText Gets or sets the text that appears when the mouse

pointer hovers over a TreeNode.

23 TreeView Gets the parent tree view that the tree node is

assigned to.

Methods of the TreeNode Class

The following are some of the commonly used methods of the TreeNode class:

S.N Method Name & Description

1 Collapse

Collapses the tree node.

2 Expand

Expands the tree node.

3 ExpandAll

Expands all the child tree nodes.

4 GetNodeCount

Returns the number of child tree nodes.

 VB.NET

 278

5 Remove

Removes the current tree node from the tree view control.

6 Toggle

Toggles the tree node to either the expanded or collapsed state.

7 ToString

Returns a string that represents the current object.

Example

In this example, let us create a tree view at runtime. Let's double click on the

Form and put the follow code in the opened window.

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles

MyBase.Load

 'create a new TreeView

 Dim TreeView1 As TreeView

 TreeView1 = New TreeView()

 TreeView1.Location = New Point(10, 10)

 TreeView1.Size = New Size(150, 150)

 Me.Controls.Add(TreeView1)

 TreeView1.Nodes.Clear()

 'Creating the root node

 Dim root = New TreeNode("Application")

 TreeView1.Nodes.Add(root)

 TreeView1.Nodes(0).Nodes.Add(New TreeNode("Project 1"))

 'Creating child nodes under the first child

 For loopindex As Integer = 1 To 4

 TreeView1.Nodes(0).Nodes(0).Nodes.Add(New _

 TreeNode("Sub Project" & Str(loopindex)))

 Next loopindex

 ' creating child nodes under the root

 TreeView1.Nodes(0).Nodes.Add(New TreeNode("Project 6"))

 'creating child nodes under the created child node

 For loopindex As Integer = 1 To 3

 VB.NET

 279

 TreeView1.Nodes(0).Nodes(1).Nodes.Add(New _

 TreeNode("Project File" & Str(loopindex)))

 Next loopindex

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 End Sub

End Class

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

You can expand the nodes to see the child nodes:

 VB.NET

 280

ListView Control

The ListView control is used to display a list of items. Along with the TreeView

control, it allows you to create a Windows Explorer like interface. Let's click on a

ListView control from the Toolbox and place it on the form.

The ListView control displays a list of items along with icons. The Item property of

the ListView control allows you to add and remove items from it.

The SelectedItem property contains a collection of the selected items.

The MultiSelect property allows you to set select more than one item in the list

view. The CheckBoxes property allows you to set check boxes next to the items.

Properties of the ListView Control

The following are some of the commonly used properties of the ListView control:

S.N Property Description

1 Alignment Gets or sets the alignment of items in the control.

2 AutoArrange Gets or sets whether icons are automatically kept

arranged.

3 BackColor Gets or sets the background color.

 VB.NET

 281

4 CheckBoxes Gets or sets a value indicating whether a check box

appears next to each item in the control.

5 CheckedIndices Gets the indexes of the currently checked items in

the control.

6 CheckedItems Gets the currently checked items in the control.

7 Columns Gets the collection of all column headers that

appear in the control.

8 GridLines Gets or sets a value indicating whether grid lines

appear between the rows and columns containing

the items and subitems in the control.

9 HeaderStyle Gets or sets the column header style.

10 HideSelection Gets or sets a value indicating whether the

selected item in the control remains highlighted

when the control loses focus.

11 HotTracking Gets or sets a value indicating whether the text of

an item or subitem has the appearance of a

hyperlink when the mouse pointer passes over it.

12 HoverSelection Gets or sets a value indicating whether an item is

automatically selected when the mouse pointer

remains over the item for a few seconds.

13 InsertionMark Gets an object used to indicate the expected drop

location when an item is dragged within a ListView

control.

14 Items Gets a collection containing all items in the control.

 VB.NET

 282

15 LabelWrap Gets or sets a value indicating whether item labels

wrap when items are displayed in the control as

icons.

16 LargeImageList Gets or sets the ImageList to use when displaying

items as large icons in the control.

17 MultiSelect Gets or sets a value indicating whether multiple

items can be selected.

18 RightToLeftLayout Gets or sets a value indicating whether the control

is laid out from right to left.

19 Scrollable Gets or sets a value indicating whether a scroll bar

is added to the control when there is not enough

room to display all items.

20 SelectedIndices Gets the indexes of the selected items in the

control.

21 SelectedItems Gets the items that are selected in the control.

22 ShowGroups Gets or sets a value indicating whether items are

displayed in groups.

23 ShowItemToolTips Gets or sets a value indicating whether ToolTips

are shown for the ListViewItem objects contained

in theListView.

24 SmallImageList Gets or sets the ImageList to use when displaying

items as small icons in the control.

25 Sorting Gets or sets the sort order for items in the control.

 VB.NET

 283

26 StateImageList Gets or sets the ImageList associated with

application-defined states in the control.

27 TopItem Gets or sets the first visible item in the control.

28 View Gets or sets how items are displayed in the control.

This property has the following values:

 LargeIcon - displays large items with a

large 32 x 32 pixels icon.

 SmallIcon - displays items with a small 16

x 16 pixels icon

 List - displays small icons always in one

column

 Details - displays items in multiple columns

with column headers and fields

 Tile - displays items as full-size icons with

item labels and sub-item information.

29 VirtualListSize Gets or sets the number of ListViewItem objects

contained in the list when in virtual mode.

30 VirtualMode Gets or sets a value indicating whether you have

provided your own data-management operations

for the ListView control.

Methods of the ListView Control

The following are some of the commonly used methods of the ListView control:

S.N Method Name & Description

1 Clear

Removes all items from the ListView control.

1 ToString

Returns a string containing the string representation of the control.

 VB.NET

 284

Events of the ListView Control

The following are some of the commonly used events of the ListView control:

S.N Event Description

1 ColumnClick Occurs when a column header is clicked.

2 ItemCheck Occurs when an item in the control is checked

or unchecked.

3 SelectedIndexChanged Occurs when the selected index is changed.

4 TextChanged Occurs when the Text property is changed.

Example

In this example, let us create a list view at runtime. Let's double click on the Form

and put the follow code in the opened window.

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles
MyBase.Load

 'create a new ListView

 Dim ListView1 As ListView

 ListView1 = New ListView()

 ListView1.Location = New Point(10, 10)

 ListView1.Size = New Size(150, 150)

 Me.Controls.Add(ListView1)

 'Creating the list items

 Dim ListItem1 As ListViewItem

 ListItem1 = ListView1.Items.Add("Item 1")

 Dim ListItem2 As ListViewItem

 VB.NET

 285

 ListItem2 = ListView1.Items.Add("Item 2")

 Dim ListItem3 As ListViewItem

 ListItem3 = ListView1.Items.Add("Item 3")

 Dim ListItem4 As ListViewItem

 ListItem4 = ListView1.Items.Add("Item 4")

 'set the view property

 ListView1.View = View.SmallIcon

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 End Sub

End Class

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

 VB.NET

 286

There are many built-in dialog boxes to be used in Windows forms for various

tasks like opening and saving files, printing a page, providing choices for colors,

fonts, page setup, etc., to the user of an application. These built-in dialog boxes

reduce the developer's time and workload.

All of these dialog box control classes inherit from the CommonDialog class and

override the RunDialog() function of the base class to create the specific dialog

box.

The RunDialog() function is automatically invoked when a user of a dialog box

calls its ShowDialog() function.

The ShowDialog method is used to display all the dialog box controls at run-time.

It returns a value of the type of DialogResult enumeration. The values of

DialogResult enumeration are:

Abort - returns DialogResult.Abort value, when user clicks an Abort button.

Cancel- returns DialogResult.Cancel, when user clicks a Cancel button.

Ignore - returns DialogResult.Ignore, when user clicks an Ignore button.

No - returns DialogResult.No, when user clicks a No button.

None - returns nothing and the dialog box continues running.

OK - returns DialogResult.OK, when user clicks an OK button

Retry - returns DialogResult.Retry , when user clicks a Retry button

Yes - returns DialogResult.Yes, when user clicks an Yes button

24. Dialog Boxes

 VB.NET

 287

The following diagram shows the common dialog class inheritance:

All these above-mentioned classes have corresponding controls that could be

added from the Toolbox during design time. You can include relevant functionality

of these classes to your application, either by instantiating the class

programmatically or by using relevant controls.

When you double click any of the dialog controls in the toolbox or drag the control

onto the form, it appears in the Component tray at the bottom of the Windows

Forms Designer, they do not directly show up on the form.

The following table lists the commonly used dialog box controls. Click the following

links to check their detail:

S.N. Control & Description

1 ColorDialog

It represents a common dialog box that displays available colors along

with controls that enable the user to define custom colors.

2 FontDialog

It prompts the user to choose a font from among those installed on the

local computer and lets the user select the font, font size, and color.

3 OpenFileDialog

It prompts the user to open a file and allows the user to select a file to

open.

4 SaveFileDialog

It prompts the user to select a location for saving a file and allows the

user to specify the name of the file to save data.

 VB.NET

 288

5 PrintDialog

It lets the user to print documents by selecting a printer and choosing

which sections of the document to print from a Windows Forms

application.

ColorDialog Control

The ColorDialog control class represents a common dialog box that displays

available colors along with controls that enable the user to define custom colors.

It lets the user select a color.

The main property of the ColorDialog control is Color, which returns

a Color object.

Following is the Color dialog box:

Properties of the ColorDialog Control

The following are some of the commonly used properties of the ColorDialog

control:

S.N Property Description

1 AllowFullOpen Gets or sets a value indicating whether the user can

use the dialog box to define custom colors.

 VB.NET

 289

2 AnyColor Gets or sets a value indicating whether the dialog box

displays all available colors in the set of basic colors.

3 CanRaiseEvents Gets a value indicating whether the component can

raise an event.

4 Color Gets or sets the color selected by the user.

5 CustomColors Gets or sets the set of custom colors shown in the

dialog box.

6 FullOpen Gets or sets a value indicating whether the controls

used to create custom colors are visible when the

dialog box is opened

7 ShowHelp Gets or sets a value indicating whether a Help button

appears in the color dialog box.

8 SolidColorOnly Gets or sets a value indicating whether the dialog box

will restrict users to selecting solid colors only.

Methods of the ColorDialog Control

The following are some of the commonly used methods of the ColorDialog control:

S.N Method Name & Description

1 Reset

Resets all options to their default values, the last selected color to black,

and the custom colors to their default values.

2 RunDialog

When overridden in a derived class, specifies a common dialog box.

3 ShowDialog

Runs a common dialog box with a default owner.

 VB.NET

 290

Events of the ColorDialog Control

The following are some of the commonly used events of the ColorDialog control:

S.N Event Description

1 HelpRequest Occurs when the user clicks the Help button on a

common dialog box.

Example

In this example, let's change the forecolor of a label control using the color dialog

box. Take the following steps:

 Drag and drop a label control, a button control and a ColorDialog control on

the form.

 Set the Text property of the label and the button control to 'Give me a new

Color' and 'Change Color', respectively.

 Change the font of the label as per your likings.

 Double-click the Change Color button and modify the code of the Click

event.

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles

Button1.Click

 If ColorDialog1.ShowDialog <> Windows.Forms.DialogResult.Cancel Then

 Label1.ForeColor = ColorDialog1.Color

 End If

End Sub

When the application is compiled and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

 VB.NET

 291

Clicking on the Change Color button, the color dialog appears, select a color and

click the OK button. The selected color will be applied as the forecolor of the text

of the label.

FontDialog Control

It prompts the user to choose a font from among those installed on the local

computer and lets the user select the font, font size, and color. It returns the Font

and Color objects.

Following is the Font dialog box:

By default, the Color ComboBox is not shown on the Font dialog box. You should

set the ShowColor property of the FontDialog control to be True.

 VB.NET

 292

Properties of the FontDialog Control

The following are some of the commonly used properties of the FontDialog control:

S.N Property Description

1 AllowSimulations Gets or sets a value indicating whether the dialog

box allows graphics device interface (GDI) font

simulations.

2 AllowVectorFonts Gets or sets a value indicating whether the dialog

box allows vector font selections.

3 AllowVerticalFonts Gets or sets a value indicating whether the dialog

box displays both vertical and horizontal fonts, or

only horizontal fonts.

4 Color Gets or sets the selected font color.

5 FixedPitchOnly Gets or sets a value indicating whether the dialog

box allows only the selection of fixed-pitch fonts.

6 Font Gets or sets the selected font.

7 FontMustExist Gets or sets a value indicating whether the dialog

box specifies an error condition if the user

attempts to select a font or style that does not

exist.

8 MaxSize Gets or sets the maximum point size a user can

select.

9 MinSize Gets or sets the minimum point size a user can

select.

10 ScriptsOnly Gets or sets a value indicating whether the dialog

box allows selection of fonts for all non-OEM and

Symbol character sets, as well as the ANSI

character set.

11 ShowApply Gets or sets a value indicating whether the dialog

box contains an Apply button.

 VB.NET

 293

12 ShowColor Gets or sets a value indicating whether the dialog

box displays the color choice.

13 ShowEffects Gets or sets a value indicating whether the dialog

box contains controls that allow the user to specify

strikethrough, underline, and text color options.

14 ShowHelp Gets or sets a value indicating whether the dialog

box displays a Help button.

Methods of the FontDialog Control

The following are some of the commonly used methods of the FontDialog control:

S.N Method Name & Description

1 Reset

Resets all options to their default values.

2 RunDialog

When overridden in a derived class, specifies a common dialog box.

3 ShowDialog

Runs a common dialog box with a default owner.

Events of the FontDialog Control

The following are some of the commonly used events of the FontDialog control:

S.N Event Description

1 Apply Occurs when the Apply button on the font dialog box

is clicked.

Example

In this example, let's change the font and color of the text from a rich text control

using the Font dialog box. Take the following steps:

 Drag and drop a RichTextBox control, a Button control and a FontDialog

control on the form.

 VB.NET

 294

 Set the Text property of the button control to 'Change Font'.

 Set the ShowColor property of the FontDialog control to True.

Double-click the Change Color button and modify the code of the Click event:

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles

Button1.Click

 If FontDialog1.ShowDialog <> Windows.Forms.DialogResult.Cancel Then

 RichTextBox1.ForeColor = FontDialog1.Color

 RichTextBox1.Font = FontDialog1.Font

 End If

End Sub

When the application is compiled and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

Enter some text and Click on the Change Font button.

 VB.NET

 295

The Font dialog appears, select a font and a color and click the OK button. The

selected font and color will be applied as the font and fore color of the text of the

rich text box.

OpenFileDialog Control

The OpenFileDialog control prompts the user to open a file and allows the user

to select a file to open. The user can check if the file exists and then open it. The

OpenFileDialog control class inherits from the abstract class FileDialog.

If the ShowReadOnly property is set to True, then a read-only check box appears

in the dialog box. You can also set the ReadOnlyChecked property to True, so that

the read-only check box appears checked.

Following is the Open File dialog box:

 VB.NET

 296

Properties of the OpenFileDialog Control

The following are some of the commonly used properties of the OpenFileDialog

control:

S.N Property Description

1 AddExtension Gets or sets a value indicating

whether the dialog box automatically

adds an extension to a file name if the

user omits the extension.

2 AutoUpgradeEnabled Gets or sets a value indicating

whether this FileDialog instance

should automatically upgrade

appearance and behavior when

running on Windows Vista.

3 CheckFileExists Gets or sets a value indicating

whether the dialog box displays a

warning if the user specifies a file

name that does not exist.

4 CheckPathExists Gets or sets a value indicating

whether the dialog box displays a

warning if the user specifies a path

that does not exist.

5 CustomPlaces Gets the custom places collection for

this FileDialog instance.

6 DefaultExt Gets or sets the default file name

extension.

7 DereferenceLinks Gets or sets a value indicating

whether the dialog box returns the

location of the file referenced by the

shortcut or whether it returns the

location of the shortcut (.lnk).

8 FileName Gets or sets a string containing the

file name selected in the file dialog

box.

 VB.NET

 297

9 FileNames Gets the file names of all selected

files in the dialog box.

10 Filter Gets or sets the current file name

filter string, which determines the

choices that appear in the "Save as

file type" or "Files of type" box in the

dialog box.

11 FilterIndex Gets or sets the index of the filter

currently selected in the file dialog

box.

12 InitialDirectory Gets or sets the initial directory

displayed by the file dialog box.

13 Multiselect Gets or sets a value indicating

whether the dialog box allows

multiple files to be selected.

14 ReadOnlyChecked Gets or sets a value indicating

whether the read-only check box is

selected.

15 RestoreDirectory Gets or sets a value indicating

whether the dialog box restores the

current directory before closing.

16 SafeFileName Gets the file name and extension for

the file selected in the dialog box. The

file name does not include the path.

17 SafeFileNames Gets an array of file names and

extensions for all the selected files in

the dialog box. The file names do not

include the path.

18 ShowHelp Gets or sets a value indicating

whether the Help button is displayed

in the file dialog box.

 VB.NET

 298

19 ShowReadOnly Gets or sets a value indicating

whether the dialog box contains a

read-only check box.

20 SupportMultiDottedExtensions Gets or sets whether the dialog box

supports displaying and saving files

that have multiple file name

extensions.

21 Title Gets or sets the file dialog box title.

22 ValidateNames Gets or sets a value indicating

whether the dialog box accepts only

valid Win32 file names.

Methods of the OpenFileDialog Control

The following are some of the commonly used methods of the OpenFileDialog

control:

S.N Method Name & Description

1 OpenFile

Opens the file selected by the user, with read-only permission. The file is

specified by the FileName property.

2 Reset

Resets all options to their default value.

Example

In this example, let's load an image file in a picture box, using the open file dialog

box. Take the following steps:

 Drag and drop a PictureBox control, a Button control and a OpenFileDialog

control on the form.

 Set the Text property of the button control to 'Load Image File'.

 Double-click the Load Image File button and modify the code of the Click

event.

 VB.NET

 299

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles

Button1.Click

 If OpenFileDialog1.ShowDialog <> Windows.Forms.DialogResult.Cancel

Then

 PictureBox1.Image = Image.FromFile(OpenFileDialog1.FileName)

 End If

End Sub

When the application is compiled and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

Click on the Load Image File button to load an image stored in your computer.

 VB.NET

 300

SaveFileDialog Control

The SaveFileDialog control prompts the user to select a location for saving a file

and allows the user to specify the name of the file to save data. The SaveFileDialog

control class inherits from the abstract class FileDialog.

Following is the Save File dialog box:

Properties of the SaveFileDialog Control

The following are some of the commonly used properties of the SaveFileDialog

control:

S.N Property Description

1 AddExtension Gets or sets a value indicating

whether the dialog box automatically

adds an extension to a file name if the

user omits the extension.

2 CheckFileExists Gets or sets a value indicating

whether the dialog box displays a

warning if the user specifies a file

name that does not exist.

 VB.NET

 301

3 CheckPathExists Gets or sets a value indicating

whether the dialog box displays a

warning if the user specifies a path

that does not exist.

4 CreatePrompt Gets or sets a value indicating

whether the dialog box prompts the

user for permission to create a file if

the user specifies a file that does not

exist.

5 DefaultExt Gets or sets the default file name

extension.

6 DereferenceLinks Gets or sets a value indicating

whether the dialog box returns the

location of the file referenced by the

shortcut or whether it returns the

location of the shortcut (.lnk).

7 FileName Gets or sets a string containing the

file name selected in the file dialog

box.

8 FileNames Gets the file names of all selected

files in the dialog box.

9 Filter Gets or sets the current file name

filter string, which determines the

choices that appear in the "Save as

file type" or "Files of type" box in the

dialog box.

10 FilterIndex Gets or sets the index of the filter

currently selected in the file dialog

box.

11 InitialDirectory Gets or sets the initial directory

displayed by the file dialog box.

12 OverwritePrompt Gets or sets a value indicating

whether the Save As dialog box

 VB.NET

 302

displays a warning if the user

specifies a file name that already

exists.

13 RestoreDirectory Gets or sets a value indicating

whether the dialog box restores the

current directory before closing.

14 ShowHelp Gets or sets a value indicating

whether the Help button is displayed

in the file dialog box.

15 SupportMultiDottedExtensions Gets or sets whether the dialog box

supports displaying and saving files

that have multiple file name

extensions.

16 Title Gets or sets the file dialog box title.

17 ValidateNames Gets or sets a value indicating

whether the dialog box accepts only

valid Win32 file names.

Methods of the SaveFileDialog Control

The following are some of the commonly used methods of the SaveFileDialog

control:

S.N Method Name & Description

1 OpenFile

Opens the file with read/write permission.

2 Reset

Resets all dialog box options to their default values.

Example

In this example, let's save the text entered into a rich text box by the user using

the save file dialog box. Take the following steps:

 Drag and drop a Label control, a RichTextBox control, a Button control and

a SaveFileDialog control on the form.

 VB.NET

 303

 Set the Text property of the label and the button control to 'We appreciate

your comments' and 'Save Comments', respectively.

 Double-click the Save Comments button and modify the code of the Click

event as shown:

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles

Button1.Click

 SaveFileDialog1.Filter = "TXT Files (*.txt*)|*.txt"

 If SaveFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK _

 Then

 My.Computer.FileSystem.WriteAllText _

 (SaveFileDialog1.FileName, RichTextBox1.Text, True)

 End If

End Sub

When the application is compiled and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

We have set the Filter property of the SaveFileDialog control to display text file

types with .txt extensions only.

Write some text in the text box and click on the Save Comment button to save

the text as a text file in your computer.

PrintDialog Control

The PrintDialog control lets the user to print documents by selecting a printer and

choosing which sections of the document to print from a Windows Forms

application.

 VB.NET

 304

There are various other controls related to printing of documents. Let us have a

brief look at these controls and their purpose. These other controls are:

 The PrintDocument control - it provides support for actual events and

operations of printing in Visual Basic and sets the properties for printing.

 The PrinterSettings control - it is used to configure how a document is

printed by specifying the printer.

 The PageSetUpDialog control - it allows the user to specify page-related

print settings including page orientation, paper size and margin size.

 The PrintPreviewControl control - it represents the raw preview part of

print previewing from a Windows Forms application, without any dialog

boxes or buttons.

 The PrintPreviewDialog control - it represents a dialog box form that

contains a PrintPreviewControl for printing from a Windows Forms

application.

Following is the Print dialog box:

 VB.NET

 305

Properties of the PrintDialog Control

The following are some of the commonly used properties of the PrintDialog control:

S.N Property Description

1 AllowCurrentPage Gets or sets a value indicating whether the Current

Pageoption button is displayed.

2 AllowPrintToFile Gets or sets a value indicating whether the Print to

filecheck box is enabled.

3 AllowSelection Gets or sets a value indicating whether

the Selection option button is enabled.

4 AllowSomePages Gets or sets a value indicating whether

the Pages option button is enabled.

5 Document Gets or sets a value indicating the PrintDocument

used to obtain PrinterSettings.

6 PrinterSettings Gets or sets the printer settings the dialog box

modifies.

7 PrintToFile Gets or sets a value indicating whether the Print to

filecheck box is selected.

8 ShowHelp Gets or sets a value indicating whether

the Help button is displayed.

9 ShowNetwork Gets or sets a value indicating whether

the Network button is displayed.

Methods of the PrintDialog Control

The following are some of the commonly used methods of the PrintDialog control:

S.N Method Name & Description

1 Reset

Resets all options to their default values.

 VB.NET

 306

2 RunDialog

When overridden in a derived class, specifies a common dialog box.

3 ShowDialog

Runs a common dialog box with a default owner.

Example

In this example, let us see how to show a Print dialog box in a form. Take the

following steps:

 Add a PrintDocument control, a PrintDialog control and a Button control on

the form. The PrintDocument and the PrintDialog controls are found on the

Print category of the controls toolbox.

 Change the text of the button to 'Print'.

 Double-click the Print button and modify the code of the Click event as

shown:

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles

Button1.Click

 PrintDialog1.Document = PrintDocument1

 PrintDialog1.PrinterSettings = PrintDocument1.PrinterSettings

 PrintDialog1.AllowSomePages = True

 If PrintDialog1.ShowDialog = DialogResult.OK Then

 PrintDocument1.PrinterSettings = PrintDialog1.PrinterSettings

 PrintDocument1.Print()

 End If

End Sub

 When the application is compiled and run using Start button available at

the Microsoft Visual Studio tool bar, it will show the following window:

 VB.NET

 307

 Click the Print button to make the Print dialog box appear.

 VB.NET

 308

In this chapter, let us study the following concepts:

 Adding menus and sub menus in an application

 Adding the cut, copy and paste functionalities in a form

 Anchoring and docking controls in a form

 Modal forms

Adding Menus and Sub Menus in an Application

Traditionally, the Menu, MainMenu, ContextMenu, and MenuItem classes were

used for adding menus, sub-menus and context menus in a Windows application.

Now, the MenuStrip, the ToolStripMenuItem, ToolStripDropDown and

ToolStripDropDownMenu controls replace and add functionality to the Menu-

related controls of previous versions. However, the old control classes are retained

for both backward compatibility and future use.

Let us create a typical windows main menu bar and sub menus using the old

version controls first since these controls are still much used in old applications.

Following is an example, which shows how we create a menu bar with menu items:

File, Edit, View and Project. The File menu has the sub menus New, Open and

Save.

Let's double click on the Form and put the following code in the opened window.

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles

MyBase.Load

 'defining the main menu bar

 Dim mnuBar As New MainMenu()

 'defining the menu items for the main menu bar

 Dim myMenuItemFile As New MenuItem("&File")

 Dim myMenuItemEdit As New MenuItem("&Edit")

 Dim myMenuItemView As New MenuItem("&View")

 Dim myMenuItemProject As New MenuItem("&Project")

 'adding the menu items to the main menu bar

25. Advanced Form

 VB.NET

 309

 mnuBar.MenuItems.Add(myMenuItemFile)

 mnuBar.MenuItems.Add(myMenuItemEdit)

 mnuBar.MenuItems.Add(myMenuItemView)

 mnuBar.MenuItems.Add(myMenuItemProject)

 ' defining some sub menus

 Dim myMenuItemNew As New MenuItem("&New")

 Dim myMenuItemOpen As New MenuItem("&Open")

 Dim myMenuItemSave As New MenuItem("&Save")

 'add sub menus to the File menu

 myMenuItemFile.MenuItems.Add(myMenuItemNew)

 myMenuItemFile.MenuItems.Add(myMenuItemOpen)

 myMenuItemFile.MenuItems.Add(myMenuItemSave)

 'add the main menu to the form

 Me.Menu = mnuBar

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 End Sub

End Class

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

 VB.NET

 310

Windows Forms contain a rich set of classes for creating your own custom menus

with modern appearance, look and feel. The MenuStrip, ToolStripMenuItem,

ContextMenuStrip controls are used to create menu bars and context menus

efficiently.

Click the following links to check their details:

S.N. Control & Description

1 MenuStrip

It provides a menu system for a form.

2 ToolStripMenuItem

It represents a selectable option displayed on a MenuStrip or

ContextMenuStrip. The ToolStripMenuItem control replaces and adds

functionality to the MenuItem control of previous versions.

3 ContextMenuStrip

It represents a shortcut menu.

MenuStrip Control

The MenuStrip control represents the container for the menu structure. The

MenuStrip control works as the top-level container for the menu structure. The

ToolStripMenuItem class and the ToolStripDropDownMenu class provide the

functionalities to create menu items, sub menus and drop-down menus. The

following diagram shows adding a MenuStrip control on the form:

 VB.NET

 311

Properties of the MenuStrip Control

The following are some of the commonly used properties of the MenuStrip control:

S.N Property Description

1 CanOverflow Gets or sets a value indicating whether the

MenuStrip supports overflow functionality.

2 GripStyle Gets or sets the visibility of the grip used to

reposition the control.

3 MdiWindowListItem Gets or sets the ToolStripMenuItem that is used

to display a list of Multiple-document interface

(MDI) child forms.

4 ShowItemToolTips Gets or sets a value indicating whether ToolTips

are shown for the MenuStrip.

 VB.NET

 312

5 Stretch Gets or sets a value indicating whether the

MenuStrip stretches from end to end in its

container.

Events of the MenuStrip Control

The following are some of the commonly used events of the MenuStrip control:

S.N Event Description

1 MenuActivate Occurs when the user accesses the menu with the

keyboard or mouse.

2 MenuDeactivate Occurs when the MenuStrip is deactivated.

Example

In this example, let us add menu and sub-menu items.

Take the following steps:

 Drag and drop or double click on a MenuStrip control, to add it to the form.

 Click the Type Here text to open a text box and enter the names of the

menu items or sub-menu items you want. When you add a sub-menu,

another text box with 'Type Here' text opens below it.

 Complete the menu structure shown in the diagram above.

 Add a sub menu Exit under the File menu.

 VB.NET

 313

 Double-Click the Exit menu created and add the following code to

the Click event of ExitToolStripMenuItem:

Private Sub ExitToolStripMenuItem_Click(sender As Object, e As

EventArgs) _

 Handles ExitToolStripMenuItem.Click

 End

End Sub

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

Click on the File -> Exit to exit from the application:

 VB.NET

 314

StripMenuItem Control

The ToolStripMenuItem class supports the menus and menu items in a menu

system. You handle these menu items through the click events in a menu system.

Properties of the ToolStripMenuItem Control

The following are some of the commonly used properties of the ToolStripMenuItem

control:

S.N Property Description

1 Checked Gets or sets a value indicating whether the

ToolStripMenuItem is checked.

2 CheckOnClick Gets or sets a value indicating whether the

ToolStripMenuItem should automatically

appear checked and unchecked when

clicked.

3 CheckState Gets or sets a value indicating whether a

ToolStripMenuItem is in the checked,

unchecked, or indeterminate state.

4 Enabled Gets or sets a value indicating whether the

control is enabled.

5 IsMdiWindowListEntry Gets a value indicating whether the

ToolStripMenuItem appears on a multiple

document interface (MDI) window list.

 VB.NET

 315

6 ShortcutKeyDisplayString Gets or sets the shortcut key text.

7 ShortcutKeys Gets or sets the shortcut keys associated

with the ToolStripMenuItem.

8 ShowShortcutKeys Gets or sets a value indicating whether the

shortcut keys that are associated with the

ToolStripMenuItem are displayed next to

the ToolStripMenuItem.

Events of the ToolStripMenuItem Control

The following are some of the commonly used events of the ToolStripMenuItem

control:

S.N Event Description

1 CheckedChanged Occurs when the value of the Checked property

changes.

2 CheckStateChanged Occurs when the value of the CheckState

property changes.

Example

In this example, let us continue with the example from the chapter 'VB.Net -

MenuStrip control'. Let us:

 Hide and display menu items.

 Disable and enable menu items.

 Set access keys for menu items

 Set shortcut keys for menu items.

Hide and Display Menu Items

The Visible property of the ToolStripMenuItem class allows you to hide or show

a menu item. Let us hide the Project Menu on the menu bar.

Add the following code snippet to the Form1_Load event:

Private Sub Form1_Load(sender As Object, e As EventArgs) _

 VB.NET

 316

Handles MyBase.Load

 ' Hide the project menu

 ProjectToolStripMenuItem1.Visible = False

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

End Sub

Add a button control on the form with text 'Show Project'.

Add the following code snippet to the Button1_Click event:

Private Sub Button1_Click(sender As Object, e As EventArgs) _

Handles Button1.Click

 ProjectToolStripMenuItem1.Visible = True

End Sub

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

Clicking on the Show Project button displays the project menu:

 VB.NET

 317

Disable and Enable Menu Items

The Enabled property allows you to disable or gray out a menu item. Let us

disable the Project Menu on the menu bar.

Add the following code snippet to the Form1_Load event:

Private Sub Form1_Load(sender As Object, e As EventArgs) _

Handles MyBase.Load

 ' Disable the project menu

 ProjectToolStripMenuItem1.Enabled = False

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

End Sub

Add a button control on the form with text 'Enable Project'. Add the following code

snippet to the Button1_Click event:

Private Sub Button1_Click(sender As Object, e As EventArgs) _

Handles Button1.Click

 ProjectToolStripMenuItem1.Enabled = True

End Sub

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

Clicking on the Enable Project button enables the project menu:

 VB.NET

 318

Set Access Keys for Menu Items

Setting access keys for a menu allows a user to select it from the keyboard by

using the ALT key.

For example, if you want to set an access key ALT + F for the file menu, change

its Text with an added & (ampersand) preceding the access key letter. In other

words, you change the text property of the file menu to &File.

Set Shortcut Keys for Menu Items

When you set a shortcut key for a menu item, user can press the shortcut from

the keyboard and it would result in occurrence of the Click event of the menu.

A shortcut key is set for a menu item using the ShortcutKeys property. For

example, to set a shortcut key CTRL + E, for the Edit menu:

 VB.NET

 319

Select the Edit menu item and select its ShortcutKeys property in the properties

window.

Click the drop down button next to it.

Select Ctrl as Modifier and E as the key.

ContextMenuStrip Control

The ContextMenuStrip control represents a shortcut menu that pops up over

controls, usually when you right click them. They appear in context of some

specific controls, so are called context menus. For example, Cut, Copy or Paste

options.

This control associates the context menu with other menu items by setting that

menu item's ContextMenuStrip property to the ContextMenuStrip control you

designed.

Context menu items can also be disabled, hidden, or deleted. You can also show

a context menu with the help of the Show method of the ContextMenuStrip

control.

The following diagram shows adding a ContextMenuStrip control on the form:

 VB.NET

 320

Properties of the ContextMenuStrip Control

The following are some of the commonly used properties of the ContextMenuStrip

control:

S.N Property Description

1 SourceControl Gets the last control that displayed the

ContextMenuStrip control.

Example

In this example, let us add a content menu with the menu items Cut, Copy and

Paste.

Take the following steps:

 Drag and drop or double click on a ControlMenuStrip control to add it to the

form.

 Add the menu items, Cut, Copy and Paste to it.

 Add a RichTextBox control on the form.

 Set the ContextMenuStrip property of the rich text box to

ContextMenuStrip1 using the properties window.

 VB.NET

 321

 Double the menu items and add following codes in the Click event of these

menus:

Private Sub CutToolStripMenuItem_Click(sender As Object, e As EventArgs)

_

Handles CutToolStripMenuItem.Click

 RichTextBox1.Cut()

End Sub

Private Sub CopyToolStripMenuItem_Click(sender As Object, e As

EventArgs) _

Handles CopyToolStripMenuItem.Click

 RichTextBox1.Copy()

End Sub

Private Sub PasteToolStripMenuItem_Click(sender As Object, e As

EventArgs) _

Handles PasteToolStripMenuItem.Click

 RichTextBox1.Paste()

End Sub

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

 VB.NET

 322

Enter some text in the rich text box, select it and right-click to get the context

menu appear:

Now, you can select any menu items and perform cut, copy or paste on the text

box.

Adding the Cut, Copy and Paste Functionalities in a Form

The methods exposed by the ClipBoard class are used for adding the cut, copy

and paste functionalities in an application. The ClipBoard class provides methods

to place data on and retrieve data from the system Clipboard.

It has the following commonly used methods:

S.N Method Name & Description

1 Clear

Removes all data from the Clipboard.

2 ContainsData

Indicates whether there is data on the Clipboard that is in the specified

format or can be converted to that format.

3 ContainsImage

Indicates whether there is data on the Clipboard that is in the Bitmap

format or can be converted to that format.

4 ContainsText

 VB.NET

 323

Indicates whether there is data on the Clipboard in the Text or

UnicodeText format, depending on the operating system.

5 GetData

Retrieves data from the Clipboard in the specified format.

6 GetDataObject

Retrieves the data that is currently on the system Clipboard.

7 GetImage

Retrieves an image from the Clipboard.

8 GetText

Retrieves text data from the Clipboard in the Text or UnicodeText format,

depending on the operating system.

9 GetText(TextDataFormat)

Retrieves text data from the Clipboard in the format indicated by the

specified TextDataFormat value.

10 SetData

Clears the Clipboard and then adds data in the specified format.

11 SetText(String)

Clears the Clipboard and then adds text data in the Text or UnicodeText

format, depending on the operating system.

Following is an example, which shows how we cut, copy and paste data using

methods of the Clipboard class. Take the following steps:

 Add a rich text box control and three button controls on the form.

 Change the text property of the buttons to Cut, Copy and Paste,

respectively.

 Double click on the buttons to add the following code in the code editor:

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) _

 Handles MyBase.Load

 ' Set the caption bar text of the form.

 VB.NET

 324

 Me.Text = "tutorialspoint.com"

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) _

 Handles Button1.Click

 Clipboard.SetDataObject(RichTextBox1.SelectedText)

 RichTextBox1.SelectedText = ""

 End Sub

 Private Sub Button2_Click(sender As Object, e As EventArgs) _

 Handles Button2.Click

 Clipboard.SetDataObject(RichTextBox1.SelectedText)

 End Sub

 Private Sub Button3_Click(sender As Object, e As EventArgs) _

 Handles Button3.Click

 Dim iData As IDataObject

 iData = Clipboard.GetDataObject()

 If (iData.GetDataPresent(DataFormats.Text)) Then

 RichTextBox1.SelectedText = iData.GetData(DataFormats.Text)

 Else

 RichTextBox1.SelectedText = " "

 End If

 End Sub

End Class

 When the above code is executed and run using Start button available at

the Microsoft Visual Studio tool bar, it will show the following window:

 VB.NET

 325

 Enter some text and check how the buttons work.

Anchoring and Docking Controls in a Form

Anchoring allows you to set an anchor position for a control to the edges of its

container control, for example, the form. The Anchor property of the Control class

allows you to set values of this property. The Anchor property gets or sets the

edges of the container to which a control is bound and determines how a control

is resized with its parent.

When you anchor a control to a form, the control maintains its distance from the

edges of the form and its anchored position, when the form is resized.

You can set the Anchor property values of a control from the Properties window:

 VB.NET

 326

For example, let us add a Button control on a form and set its anchor property to

Bottom, Right. Run this form to see the original position of the Button control with

respect to the form.

Now, when you stretch the form, the distance between the Button and the bottom

right corner of the form remains same.

Docking of a control means docking it to one of the edges of its container. In

docking, the control fills certain area of the container completely.

The Dock property of the Control class does this. The Dock property gets or sets

which control borders are docked to its parent control and determines how a

control is resized with its parent.

You can set the Dock property values of a control from the Properties window:

 VB.NET

 327

For example, let us add a Button control on a form and set its Dock property to

Bottom. Run this form to see the original position of the Button control with respect

to the form.

Now, when you stretch the form, the Button resizes itself with the form.

 VB.NET

 328

Modal Forms

Modal Forms are those forms that need to be closed or hidden before you can

continue working with the rest of the application. All dialog boxes are modal forms.

A MessageBox is also a modal form.

You can call a modal form by two ways:

 Calling the ShowDialog method

 Calling the Show method

Let us take up an example in which we will create a modal form, a dialog box.

Take the following steps:

 Add a form, Form1 to your application, and add two labels and a button

control to Form1

 Change the text properties of the first label and the button to 'Welcome to

Tutorials Point' and 'Enter your Name', respectively. Keep the text

properties of the second label as blank.

 Add a new Windows Form, Form2, and add two buttons, one label, and a

text box to Form2.

 Change the text properties of the buttons to OK and Cancel, respectively.

Change the text properties of the label to 'Enter your name:'.

 Set the FormBorderStyle property of Form2 to FixedDialog, for giving it a

dialog box border.

 Set the ControlBox property of Form2 to False.

 Set the ShowInTaskbar property of Form2 to False.

 VB.NET

 329

 Set the DialogResult property of the OK button to OK and the Cancel button

to Cancel.

 Add the following code snippets in the Form2_Load method of Form2:

Private Sub Form2_Load(sender As Object, e As EventArgs) _

 Handles MyBase.Load

 AcceptButton = Button1

 CancelButton = Button2

End Sub

 Add the following code snippets in the Button1_Click method of Form1:

Private Sub Button1_Click(sender As Object, e As EventArgs) _

 Handles Button1.Click

 Dim frmSecond As Form2 = New Form2()

 If frmSecond.ShowDialog() = DialogResult.OK Then

 Label2.Text = frmSecond.TextBox1.Text

 End If

End Sub

 When the above code is executed and run using Start button available at

the Microsoft Visual Studio tool bar, it will show the following window:

 VB.NET

 330

 Clicking on the 'Enter your Name' button displays the second form:

 Clicking on the OK button takes the control and information back from the

modal form to the previous form:

 VB.NET

 331

Events are basically a user action like key press, clicks, mouse movements, etc.,

or some occurrence like system generated notifications. Applications need to

respond to events when they occur.

Clicking on a button, or entering some text in a text box, or clicking on a menu

item, all are examples of events. An event is an action that calls a function or may

cause another event. Event handlers are functions that tell how to respond to an

event.

VB.Net is an event-driven language. There are mainly two types of events:

 Mouse events

 Keyboard events

Handling Mouse Events

Mouse events occur with mouse movements in forms and controls. Following are

the various mouse events related with a Control class:

 MouseDown - it occurs when a mouse button is pressed

 MouseEnter - it occurs when the mouse pointer enters the control

 MouseHover - it occurs when the mouse pointer hovers over the control

 MouseLeave - it occurs when the mouse pointer leaves the control

 MouseMove - it occurs when the mouse pointer moves over the control

 MouseUp - it occurs when the mouse pointer is over the control and the

mouse button is released

 MouseWheel - it occurs when the mouse wheel moves and the control has

focus

The event handlers of the mouse events get an argument of

type MouseEventArgs. The MouseEventArgs object is used for handling mouse

events. It has the following properties:

 Buttons - indicates the mouse button pressed

 Clicks - indicates the number of clicks

 Delta - indicates the number of detents the mouse wheel rotated

26. Event Handling

 VB.NET

 332

 X - indicates the x-coordinate of mouse click

 Y - indicates the y-coordinate of mouse click

Example

Following is an example, which shows how to handle mouse events. Take the

following steps:

 Add three labels, three text boxes and a button control in the form.

 Change the text properties of the labels to - Customer ID, Name and

Address, respectively.

 Change the name properties of the text boxes to txtID, txtName and

txtAddress, respectively.

 Change the text property of the button to 'Submit'.

 Add the following code in the code editor window:

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles

MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspont.com"

 End Sub

 Private Sub txtID_MouseEnter(sender As Object, e As EventArgs)_

 Handles txtID.MouseEnter

 'code for handling mouse enter on ID textbox

 txtID.BackColor = Color.CornflowerBlue

 txtID.ForeColor = Color.White

 End Sub

 Private Sub txtID_MouseLeave(sender As Object, e As EventArgs) _

 Handles txtID.MouseLeave

 'code for handling mouse leave on ID textbox

 txtID.BackColor = Color.White

 txtID.ForeColor = Color.Blue

 End Sub

 VB.NET

 333

 Private Sub txtName_MouseEnter(sender As Object, e As EventArgs) _

 Handles txtName.MouseEnter

 'code for handling mouse enter on Name textbox

 txtName.BackColor = Color.CornflowerBlue

 txtName.ForeColor = Color.White

 End Sub

 Private Sub txtName_MouseLeave(sender As Object, e As EventArgs) _

 Handles txtName.MouseLeave

 'code for handling mouse leave on Name textbox

 txtName.BackColor = Color.White

 txtName.ForeColor = Color.Blue

 End Sub

 Private Sub txtAddress_MouseEnter(sender As Object, e As EventArgs) _

 Handles txtAddress.MouseEnter

 'code for handling mouse enter on Address textbox

 txtAddress.BackColor = Color.CornflowerBlue

 txtAddress.ForeColor = Color.White

 End Sub

 Private Sub txtAddress_MouseLeave(sender As Object, e As EventArgs) _

 Handles txtAddress.MouseLeave

 'code for handling mouse leave on Address textbox

 txtAddress.BackColor = Color.White

 txtAddress.ForeColor = Color.Blue

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) _

 Handles Button1.Click

 MsgBox("Thank you " & txtName.Text & ", for your kind

cooperation")

 End Sub

End Class

 When the above code is executed and run using Start button available at

the Microsoft Visual Studio tool bar, it will show the following window:

 VB.NET

 334

 Try to enter text in the text boxes and check the mouse events:

Handling Keyboard Events

Following are the various keyboard events related with a Control class:

 KeyDown - occurs when a key is pressed down and the control has focus

 KeyPress - occurs when a key is pressed and the control has focus

 KeyUp - occurs when a key is released while the control has focus

The event handlers of the KeyDown and KeyUp events get an argument of type

KeyEventArgs. This object has the following properties:

 Alt - it indicates whether the ALT key is pressed/p>

 VB.NET

 335

 Control - it indicates whether the CTRL key is pressed

 Handled - it indicates whether the event is handled

 KeyCode - stores the keyboard code for the event

 KeyData - stores the keyboard data for the event

 KeyValue - stores the keyboard value for the event

 Modifiers - it indicates which modifier keys (Ctrl, Shift, and/or Alt) are

pressed

 Shift - it indicates if the Shift key is pressed

The event handlers of the KeyDown and KeyUp events get an argument of type

KeyEventArgs. This object has the following properties:

 Handled - indicates if the KeyPress event is handled

 KeyChar - stores the character corresponding to the key pressed

Example

Let us continue with the previous example to show how to handle keyboard

events. The code will verify that the user enters some numbers for his customer

ID and age.

 Add a label with text Property as 'Age' and add a corresponding text box

named txtAge.

 Add the following codes for handling the KeyUP events of the text box txtID.

Private Sub txtID_KeyUP(sender As Object, e As KeyEventArgs) _

 Handles txtID.KeyUp

 If (Not Char.IsNumber(ChrW(e.KeyCode))) Then

 MessageBox.Show("Enter numbers for your Customer ID")

 txtID.Text = " "

 End If

End Sub

Add the following codes for handling the KeyUP events of the text box txtID.

Private Sub txtAge_KeyUP(sender As Object, e As KeyEventArgs) _

 VB.NET

 336

 Handles txtAge.KeyUp

 If (Not Char.IsNumber(ChrW(e.keyCode))) Then

 MessageBox.Show("Enter numbers for age")

 txtAge.Text = " "

 End If

End Sub

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

If you leave the text for age or ID as blank or enter some non-numeric data, it

gives a warning message box and clears the respective text:

 VB.NET

 337

 VB.NET

 338

A regular expression is a pattern that could be matched against an input text.

The .Net framework provides a regular expression engine that allows such

matching. A pattern consists of one or more character literals, operators, or

constructs.

Constructs for Defining Regular Expressions

There are various categories of characters, operators, and constructs that lets you

to define regular expressions. Click the follwoing links to find these constructs.

Character escapes

Character classes

Anchors

Grouping constructs

Quantifiers

Backreference constructs

Alternation constructs

Substitutions

Miscellaneous constructs

Character Escapes

These are basically the special characters or escape characters. The backslash

character (\) in a regular expression indicates that the character that follows it

either is a special character or should be interpreted literally. The following table

lists the escape characters:

Escaped

character
Description Pattern Matches

\a
Matches a bell character,

\u0007.
\a

"\u0007" in

"Warning!" +

'\u0007'

27. Regular Expressions

http://localhost/vb.net/vb.net_anchors.htm

 VB.NET

 339

\b

In a character class,

matches a backspace,

\u0008.

[\b]{3,}
"\b\b\b\b" in

"\b\b\b\b"

\t Matches a tab, \u0009. (\w+)\t
"Name\t", "Addr\t"

in "Name\tAddr\t"

\r

Matches a carriage

return, \u000D. (\r is

not equivalent to the

newline character, \n.)

\r\n(\w+)
"\r\nHello" in

"\r\Hello\nWorld."

\v
Matches a vertical tab,

\u000B.
[\v]{2,} "\v\v\v" in "\v\v\v"

\f
Matches a form feed,

\u000C.
[\f]{2,} "\f\f\f" in "\f\f\f"

\n
Matches a new line,

\u000A.
\r\n(\w+)

"\r\nHello" in

"\r\Hello\nWorld."

\e
Matches an escape,

\u001B.
\e

"\x001B" in

"\x001B"

\ nnn

Uses octal

representation to specify

a character (nnn

consists of up to three

digits).

\w\040\w
"a b", "c d" in "a bc

d"

\x nn

Uses hexadecimal

representation to specify

a character (nn consists

of exactly two digits).

\w\x20\w
"a b", "c d" in "a bc

d"

\c X\c x

Matches the ASCII

control character that is

specified by X or x,

where X or x is the letter

of the control character.

\cC
"\x0003" in

"\x0003" (Ctrl-C)

 VB.NET

 340

\u nnnn

Matches a Unicode

character by using

hexadecimal

representation (exactly

four digits, as

represented by nnnn).

\w\u0020\w
"a b", "c d" in "a bc

d"

\

When followed by a

character that is not

recognized as an

escaped character,

matches that character.

\d+[\+-

x*]\d+\d+[\+-

x*\d+

"2+2" and "3*9" in

"(2+2) * 3*9"

Character Classes

A character class matches any one of a set of characters. The following table

describes the character classes:

Character class Description Pattern Matches

[character_group]

Matches any single

character in

character_group. By

default, the match is

case-sensitive.

[mn]

"m" in "mat"

"m", "n" in

"moon"

[^character_group]

Negation: Matches any

single character that is

not in character_group.

By default, characters

incharacter_group are

case-sensitive.

[^aei] "v", "l" in "avail"

[first - last]

Character range:

Matches any single

character in the range

from first to last.

(\w+)\t

"Name\t",

"Addr\t" in

"Name\tAddr\t"

.

Wildcard: Matches any

single character except

\n.

a.e
"ave" in "have"

"ate" in "mate"

 VB.NET

 341

\p{ name }

Matches any single

character in the Unicode

general category or

named block specified

by name.

\p{Lu}
"C", "L" in "City

Lights"

\P{ name }

Matches any single

character that is not in

the Unicode general

category or named block

specified by name.

\P{Lu}
"i", "t", "y" in

"City"

\w
Matches any word

character.
\w

"R", "o", "m" and

"1" in "Room#1"

\W
Matches any non-word

character.
\W "#" in "Room#1"

\s
Matches any white-space

character.
\w\s "D " in "ID A1.3"

\S
Matches any non-white-

space character.
\s\S " _" in "int __ctr"

\d
Matches any decimal

digit.
\d "4" in "4 = IV"

\D

Matches any character

other than a decimal

digit.

\D
" ", "=", " ", "I",

"V" in "4 = IV"

Anchors

Anchors allow a match to succeed or fail depending on the current position in the

string. The following table lists the anchors:

Assertion Description Pattern Matches

^ The match must start at the

beginning of the string or line.

^\d{3} "567" in "567-777-"

 VB.NET

 342

$ The match must occur at the

end of the string or

before \n at the end of the line

or string.

-\d{4}$ "-2012" in "8-12-

2012"

\A The match must occur at the

start of the string.

\A\w{3} "Code" in "Code-

007-"

\Z The match must occur at the

end of the string or

before \n at the end of the

string.

-\d{3}\Z "-007" in "Bond-

901-007"

\z The match must occur at the

end of the string.

-\d{3}\z "-333" in "-901-

333"

\G The match must occur at the

point, where the previous

match ended.

\\G\(\d\) "(1)", "(3)", "(5)" in

"(1)(3)(5)[7](9)"

\b The match must occur on a

boundary between

a \w(alphanumeric) and

a \W (non-alphanumeric)

character.

\w "R", "o", "m" and "1"

in "Room#1"

\B The match must not occur on

a\b boundary.

\Bend\w*\b "ends", "ender" in

"end sends endure

lender"

Grouping Constructs

Grouping constructs delineate sub-expressions of a regular expression and

capture substrings of an input string. The following table lists the grouping

constructs:

Grouping

construct
Description Pattern Matches

(subexpression)
Captures the

matched

subexpression

(\w)\1 "ee" in "deep"

 VB.NET

 343

and assigns it a

zero-based

ordinal number.

(?< name

>subexpression)

Captures the

matched

subexpression

into a named

group.

(?< double>\w)\k<

double>
"ee" in "deep"

(?< name1 -

name2

>subexpression)

Defines a

balancing group

definition.

(((?'Open'\()[^\(\)]

*)+((?'Close-

Open'\))[^\(\)]*)+)

*(?(Open)(?!))$

"((1-3)*(3-

1))" in

"3+2^((1-

3)*(3-1))"

(?:

subexpression)

Defines a

noncapturing

group.

Write(?:Line)?

"WriteLine" in

"Console.Write

Line()"

(?imnsx-

imnsx:subexpres

sion)

Applies or

disables the

specified options

withinsubexpress

ion.

A\d{2}(?i:\w+)\b

"A12xl",

"A12XL" in

"A12xl A12XL

a12xl"

(?=

subexpression)

Zero-width

positive

lookahead

assertion.

\w+(?=\.)

"is", "ran", and

"out" in "He is.

The dog ran.

The sun is

out."

(?!

subexpression)

Zero-width

negative

lookahead

assertion.

\b(?!un)\w+\b

"sure", "used"

in "unsure

sure unity

used"

(?<

=subexpression)

Zero-width

positive

lookbehind

assertion.

(?< =19)\d{2}\b

"51", "03" in

"1851 1999

1950 1905

2003"

 VB.NET

 344

(?< !

subexpression)

Zero-width

negative

lookbehind

assertion.

(?< !19)\d{2}\b

"ends",

"ender" in

"end sends

endure lender"

(?>

subexpression)

Nonbacktracking

(or "greedy")

subexpression.

[13579](?>A+B+)

"1ABB",

"3ABB", and

"5AB" in

"1ABB 3ABBC

5AB 5AC"

Quantifiers

Quantifiers specify how many instances of the previous element (which can be a

character, a group, or a character class) must be present in the input string for a

match to occur.

Quantifier Description Pattern Matches

* Matches the previous

element zero or more

times.

\d*\.\d ".0", "19.9", "219.9"

+ Matches the previous

element one or more

times.

"be+" "bee" in "been", "be" in

"bent"

? Matches the previous

element zero or one time.

"rai?n" "ran", "rain"

{ n } Matches the previous

element exactly n times.

",\d{3}" ",043" in "1,043.6",

",876", ",543", and

",210" in

"9,876,543,210"

{ n ,} Matches the previous

element at least n times.

"\d{2,}" "166", "29", "1930"

{ n , m } Matches the previous

element at least n times,

"\d{3,5}" "166", "17668" "19302"

in "193024"

 VB.NET

 345

but no more than m

times.

*? Matches the previous

element zero or more

times, but as few times

as possible.

\d*?\.\d ".0", "19.9", "219.9"

+? Matches the previous

element one or more

times, but as few times

as possible.

"be+?" "be" in "been", "be" in

"bent"

?? Matches the previous

element zero or one time,

but as few times as

possible.

"rai??n" "ran", "rain"

{ n }? Matches the preceding

element exactly n times.

",\d{3}?" ",043" in "1,043.6",

",876", ",543", and

",210" in

"9,876,543,210"

{ n ,}? Matches the previous

element at least n times,

but as few times as

possible.

"\d{2,}?" "166", "29", "1930"

{ n , m }? Matches the previous

element between n and

m times, but as few times

as possible.

"\d{3,5}?" "166", "17668" "193",

"024" in "193024"

Backreference Constructs

Backreference constructs allow a previously matched sub-expression to be

identified subsequently in the same regular expression. The following table lists

these constructs:

Backreference

construct

Description Pattern Matches

 VB.NET

 346

\ number Backreference. Matches the

value of a numbered

subexpression.

(\w)\1 "ee" in

"seek"

\k< name > Named backreference.

Matches the value of a named

expression.

(?<

char>\w)\k<

char>

"ee" in

"seek"

Alternation Constructs

Alternation constructs modify a regular expression to enable either/or matching.

The following table lists the alternation constructs:

Alternation

construct
Description Pattern Matches

|

Matches any one

element

separated by the

vertical bar (|)

character.

th(e|is|at)

"the",

"this" in

"this is

the day. "

(?(

expression

)yes | no)

Matches yes if

expression

matches;

otherwise,

matches the

optional no part.

Expression is

interpreted as a

zero-width

assertion.

(?(A)A\d{2}\b|\b\d{3}\b)

"A10",

"910" in

"A10

C103

910"

(?(name

)yes | no)

Matches yes if

the named

capture name

has a match;

otherwise,

matches the

optional no.

(?<

quoted>")?(?(quoted).+?"|\S+\s)

Dogs.jpg,

"Yiska

playing.jp

g" in

"Dogs.jpg

"Yiska

playing.jp

g""

 VB.NET

 347

Substitutions

Substitutions are used in replacement patterns. The following table lists the

substitutions:

Chara

cter
Description Pattern

Replace

ment

pattern

Input

string

Result

string

$num

ber

Substitutes

the substring

matched by

group

number.

\b(\w+)(\s)(\w+)\b $3$2$1 "one two" "two one"

${na

me}

Substitutes

the substring

matched by

the

namedgroupn

ame.

\b(?<

word1>\w+)(\s)(?<

word2>\w+)\b

${word2}

${word1}
"one two" "two one"

$$
Substitutes a

literal "$".
\b(\d+)\s?USD $$$1 "103 USD" "$103"

$&

Substitutes a

copy of the

whole match.

(\$*(\d*(\.+\d+)?)

{1})

$& "$1.30" "$1.30**"

$`

Substitutes all

the text of

the input

string before

the match.

B+ $` "AABBCC" "AAAACC"

$'

Substitutes all

the text of

the input

string after

the match.

B+ $' "AABBCC" "AACCCC"

$+ Substitutes

the last group

B+(C+) $+ "AABBCCDD" AACCDD

 VB.NET

 348

that was

captured.

$_

Substitutes

the entire

input string.

B+ $_ "AABBCC"
"AAAABBCC

CC"

Miscellaneous Constructs

Following are various miscellaneous constructs:

Construct Definition Example

(?imnsx-

imnsx)

Sets or disables options such

as case insensitivity in the

middle of a pattern.

\bA(?i)b\w+\b matches

"ABA", "Able" in "ABA Able

Act"

(?#comment) In-line comment. The

comment ends at the first

closing parenthesis.

\bA(?#Matches words starting

with A)\w+\b

[to end of

line]

X-mode comment. The

comment starts at an

unescaped # and continues

to the end of the line.

(?x)\bA\w+\b#Matches

words starting with A

The Regex Class

The Regex class is used for representing a regular expression. The Regex class

has the following commonly used methods:

S.N Methods & Description

1 Public Function IsMatch (input As String) As Boolean

Indicates whether the regular expression specified in the Regex

constructor finds a match in a specified input string.

2 Public Function IsMatch (input As String, startat As Integer) As

Boolean

 VB.NET

 349

Indicates whether the regular expression specified in the Regex

constructor finds a match in the specified input string, beginning at the

specified starting position in the string.

3 Public Shared Function IsMatch (input As String, pattern As

String) As Boolean

Indicates whether the specified regular expression finds a match in the

specified input string.

4 Public Function Matches (input As String) As MatchCollection

Searches the specified input string for all occurrences of a regular

expression.

5 Public Function Replace (input As String, replacement As String)

As String

In a specified input string, replaces all strings that match a regular

expression pattern with a specified replacement string.

6 Public Function Split (input As String) As String()

Splits an input string into an array of substrings at the positions defined

by a regular expression pattern specified in the Regex constructor.

For the complete list of methods and properties, please consult Microsoft

documentation.

Example 1

The following example matches words that start with 'S':

Imports System.Text.RegularExpressions

Module regexProg

 Sub showMatch(ByVal text As String, ByVal expr As String)

 Console.WriteLine("The Expression: " + expr)

 Dim mc As MatchCollection = Regex.Matches(text, expr)

 Dim m As Match

 For Each m In mc

 Console.WriteLine(m)

 Next m

 End Sub

 VB.NET

 350

 Sub Main()

 Dim str As String = "A Thousand Splendid Suns"

 Console.WriteLine("Matching words that start with 'S': ")

 showMatch(str, "\bS\S*")

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Matching words that start with 'S':

The Expression: \bS\S*

Splendid

Suns

Example 2

The following example matches words that start with 'm' and ends with 'e':

Imports System.Text.RegularExpressions

Module regexProg

 Sub showMatch(ByVal text As String, ByVal expr As String)

 Console.WriteLine("The Expression: " + expr)

 Dim mc As MatchCollection = Regex.Matches(text, expr)

 Dim m As Match

 For Each m In mc

 Console.WriteLine(m)

 Next m

 End Sub

 Sub Main()

 Dim str As String = "make a maze and manage to measure it"

 Console.WriteLine("Matching words that start with 'm' and ends

with 'e': ")

 showMatch(str, "\bm\S*e\b")

 Console.ReadKey()

 End Sub

 VB.NET

 351

End Module

When the above code is compiled and executed, it produces the following result:

Matching words start with 'm' and ends with 'e':

The Expression: \bm\S*e\b

make

maze

manage

measure

Example 3

This example replaces extra white space:

Imports System.Text.RegularExpressions

Module regexProg

 Sub Main()

 Dim input As String = "Hello World "

 Dim pattern As String = "\\s+"

 Dim replacement As String = " "

 Dim rgx As Regex = New Regex(pattern)

 Dim result As String = rgx.Replace(input, replacement)

 Console.WriteLine("Original String: {0}", input)

 Console.WriteLine("Replacement String: {0}", result)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Original String: Hello World

Replacement String: Hello World

 VB.NET

 352

Applications communicate with a database, firstly, to retrieve the data stored

there and present it in a user-friendly way, and secondly, to update the database

by inserting, modifying and deleting data.

Microsoft ActiveX Data Objects.Net (ADO.Net) is a model, a part of the .Net

framework that is used by the .Net applications for retrieving, accessing, and

updating data.

ADO.Net Object Model

ADO.Net object model is nothing but the structured process flow through various

components. The object model can be pictorially described as:

The data residing in a data store or database is retrieved through the data

provider. Various components of the data provider retrieve data for the

application and update data.

An application accesses data either through a dataset or a data reader.

 Datasets store data in a disconnected cache and the application retrieves

data from it.

 Data readers provide data to the application in a read-only and forward-

only mode.

28. Database Access

 VB.NET

 353

Data Provider

A data provider is used for connecting to a database, executing commands and

retrieving data, storing it in a dataset, reading the retrieved data and updating

the database.

The data provider in ADO.Net consists of the following four objects:

S.N Objects & Description

1 Connection

This component is used to set up a connection with a data source.

2
Command

A command is a SQL statement or a stored procedure used to retrieve,

insert, delete or modify data in a data source.

3
DataReader

Data reader is used to retrieve data from a data source in a read-only

and forward-only mode.

4

DataAdapter

This is integral to the working of ADO.Net since data is transferred to and

from a database through a data adapter. It retrieves data from a

database into a dataset and updates the database. When changes are

made to the dataset, the changes in the database are actually done by

the data adapter.

There are following different types of data providers included in ADO.Net

 The .Net Framework data provider for SQL Server - provides access to

Microsoft SQL Server.

 The .Net Framework data provider for OLE DB - provides access to data

sources exposed by using OLE DB.

 The .Net Framework data provider for ODBC - provides access to data

sources exposed by ODBC.

 The .Net Framework data provider for Oracle - provides access to Oracle

data source.

 VB.NET

 354

 The EntityClient provider - enables accessing data through Entity Data

Model (EDM) applications.

DataSet

DataSet is an in-memory representation of data. It is a disconnected, cached set

of records that are retrieved from a database. When a connection is established

with the database, the data adapter creates a dataset and stores data in it. After

the data is retrieved and stored in a dataset, the connection with the database is

closed. This is called the 'disconnected architecture'. The dataset works as a virtual

database containing tables, rows, and columns.

The following diagram shows the dataset object model:

The DataSet class is present in the System.Data namespace. The following table

describes all the components of DataSet:

S.N Components & Description

1 DataTableCollection

It contains all the tables retrieved from the data source.

2 DataRelationCollection

It contains relationships and the links between tables in a data set.

 VB.NET

 355

3 ExtendedProperties

It contains additional information, like the SQL statement for retrieving

data, time of retrieval, etc.

4 DataTable

It represents a table in the DataTableCollection of a dataset. It consists

of the DataRow and DataColumn objects. The DataTable objects are case-

sensitive.

5 DataRelation

It represents a relationship in the DataRelationshipCollection of the

dataset. It is used to relate two DataTable objects to each other through

the DataColumn objects.

6 DataRowCollection

It contains all the rows in a DataTable.

7 DataView

It represents a fixed customized view of a DataTable for sorting, filtering,

searching, editing, and navigation.

8 PrimaryKey

It represents the column that uniquely identifies a row in a DataTable.

9 DataRow

It represents a row in the DataTable. The DataRow object and its

properties and methods are used to retrieve, evaluate, insert, delete, and

update values in the DataTable. The NewRow method is used to create a

new row and the Add method adds a row to the table.

10 DataColumnCollection

It represents all the columns in a DataTable.

11 DataColumn

It consists of the number of columns that comprise a DataTable.

Connecting to a Database

The .Net Framework provides two types of Connection classes:

SqlConnection - designed for connecting to Microsoft SQL Server.

 VB.NET

 356

OleDbConnection - designed for connecting to a wide range of databases,

like Microsoft Access and Oracle.

Example 1

We have a table stored in Microsoft SQL Server, named Customers, in a database

named testDB. Please consult 'SQL Server' tutorial for creating databases and

database tables in SQL Server.

Let us connect to this database. Take the following steps:

 Select TOOLS -> Connect to Database

 Select a server name and the database name in the Add Connection dialog

box.

 VB.NET

 357

 Click on the Test Connection button to check if the connection succeeded.

 Add a DataGridView on the form.

 VB.NET

 358

 Click on the Choose Data Source combo box.

 Click on the Add Project Data Source link.

 This opens the Data Source Configuration Wizard.

 Select Database as the data source type

 VB.NET

 359

 Choose DataSet as the database model.

 VB.NET

 360

 Choose the connection already set up.

 Save the connection string.

 VB.NET

 361

 Choose the database object, Customers table in our example, and click the

Finish button.

 Select the Preview Data link to see the data in the Results grid:

 VB.NET

 362

 When the application is run using Start button available at the Microsoft

Visual Studio tool bar, it will show the following window:

Example 2

In this example, let us access data in a DataGridView control using code. Take the

following steps:

 Add a DataGridView control and a button in the form.

 Change the text of the button control to 'Fill'.

 Double click the button control to add the required code for the Click event

of the button, as shown below:

Imports System.Data.SqlClient

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) _

 Handles MyBase.Load

 'TODO: This line of code loads data into the

'TestDBDataSet.CUSTOMERS' table. You can move, or remove it, as

needed.

 Me.CUSTOMERSTableAdapter.Fill(Me.TestDBDataSet.CUSTOMERS)

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 End Sub

 VB.NET

 363

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles

Button1.Click

 Dim connection As SqlConnection = New sqlconnection()

 connection.ConnectionString = "Data Source=KABIR-DESKTOP; _

 Initial Catalog=testDB;Integrated Security=True"

 connection.Open()

 Dim adp As SqlDataAdapter = New SqlDataAdapter _

 ("select * from Customers", connection)

 Dim ds As DataSet = New DataSet()

 adp.Fill(ds)

 DataGridView1.DataSource = ds.Tables(0)

 End Sub

End Class

 When the above code is executed and run using Start button available at

the Microsoft Visual Studio tool bar, it will show the following window:

 Clicking the Fill button displays the table on the data grid view control:

 VB.NET

 364

Creating Table, Columns, and Rows

We have discussed that the DataSet components like DataTable, DataColumn, and

DataRow allow us to create tables, columns and rows, respectively.

The following example demonstrates the concept:

Example 3

So far, we have used tables and databases already existing in our computer. In

this example, we will create a table, add columns, rows, and data into it and

display the table using a DataGridView object.

Take the following steps:

 Add a DataGridView control and a button in the form.

 Change the text of the button control to 'Fill'.

 Add the following code in the code editor.

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles

MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspont.com"

 End Sub

 Private Function CreateDataSet() As DataSet

 'creating a DataSet object for tables

 VB.NET

 365

 Dim dataset As DataSet = New DataSet()

 ' creating the student table

 Dim Students As DataTable = CreateStudentTable()

 dataset.Tables.Add(Students)

 Return dataset

 End Function

 Private Function CreateStudentTable() As DataTable

 Dim Students As DataTable

 Students = New DataTable("Student")

 ' adding columns

 AddNewColumn(Students, "System.Int32", "StudentID")

 AddNewColumn(Students, "System.String", "StudentName")

 AddNewColumn(Students, "System.String", "StudentCity")

 ' adding rows

 AddNewRow(Students, 1, "Zara Ali", "Kolkata")

 AddNewRow(Students, 2, "Shreya Sharma", "Delhi")

 AddNewRow(Students, 3, "Rini Mukherjee", "Hyderabad")

 AddNewRow(Students, 4, "Sunil Dubey", "Bikaner")

 AddNewRow(Students, 5, "Rajat Mishra", "Patna")

 Return Students

 End Function

 Private Sub AddNewColumn(ByRef table As DataTable, _

 ByVal columnType As String, ByVal columnName As String)

 Dim column As DataColumn = _

 table.Columns.Add(columnName, Type.GetType(columnType))

 End Sub

 'adding data into the table

 Private Sub AddNewRow(ByRef table As DataTable, ByRef id As Integer,_

 ByRef name As String, ByRef city As String)

 Dim newrow As DataRow = table.NewRow()

 newrow("StudentID") = id

 newrow("StudentName") = name

 newrow("StudentCity") = city

 VB.NET

 366

 table.Rows.Add(newrow)

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles

Button1.Click

 Dim ds As New DataSet

 ds = CreateDataSet()

 DataGridView1.DataSource = ds.Tables("Student")

 End Sub

End Class

 When the above code is executed and run using Start button available at

the Microsoft Visual Studio tool bar, it will show the following window:

 Clicking the Fill button displays the table on the data grid view control:

 VB.NET

 367

VB.Net provides support for interoperability between the COM object model of

Microsoft Excel 2010 and your application.

To avail this interoperability in your application, you need to import the namespace

Microsoft.Office.Interop.Excel in your Windows Form Application.

Creating an Excel Application from VB.Net

Let's start with creating a Window Forms Application by following the following

steps in Microsoft Visual Studio: File -> New Project -> Windows Forms

Applications

Finally, select OK, Microsoft Visual Studio creates your project and displays

following Form1.

Insert a Button control Button1 in the form.

Add a reference to Microsoft Excel Object Library to your project. To do this:

Select Add Reference from the Project Menu.

29. Excel Sheet

 VB.NET

 368

On the COM tab, locate Microsoft Excel Object Library and then click Select.

 Click OK.

Double click the code window and populate the Click event of Button1, as

shown below.

' Add the following code snippet on top of Form1.vb

Imports Excel = Microsoft.Office.Interop.Excel

Public Class Form1

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles

Button1.Click

 Dim appXL As Excel.Application

 Dim wbXl As Excel.Workbook

 Dim shXL As Excel.Worksheet

 Dim raXL As Excel.Range

 ' Start Excel and get Application object.

 appXL = CreateObject("Excel.Application")

 appXL.Visible = True

 ' Add a new workbook.

 wbXl = appXL.Workbooks.Add

 shXL = wbXl.ActiveSheet

 ' Add table headers going cell by cell.

 shXL.Cells(1, 1).Value = "First Name"

 VB.NET

 369

 shXL.Cells(1, 2).Value = "Last Name"

 shXL.Cells(1, 3).Value = "Full Name"

 shXL.Cells(1, 4).Value = "Specialization"

 ' Format A1:D1 as bold, vertical alignment = center.

 With shXL.Range("A1", "D1")

 .Font.Bold = True

 .VerticalAlignment = Excel.XlVAlign.xlVAlignCenter

 End With

 ' Create an array to set multiple values at once.

 Dim students(5, 2) As String

 students(0, 0) = "Zara"

 students(0, 1) = "Ali"

 students(1, 0) = "Nuha"

 students(1, 1) = "Ali"

 students(2, 0) = "Arilia"

 students(2, 1) = "RamKumar"

 students(3, 0) = "Rita"

 students(3, 1) = "Jones"

 students(4, 0) = "Umme"

 students(4, 1) = "Ayman"

 ' Fill A2:B6 with an array of values (First and Last Names).

 shXL.Range("A2", "B6").Value = students

 ' Fill C2:C6 with a relative formula (=A2 & " " & B2).

 raXL = shXL.Range("C2", "C6")

 raXL.Formula = "=A2 & "" "" & B2"

 ' Fill D2:D6 values.

 With shXL

 .Cells(2, 4).Value = "Biology"

 .Cells(3, 4).Value = "Mathmematics"

 .Cells(4, 4).Value = "Physics"

 .Cells(5, 4).Value = "Mathmematics"

 .Cells(6, 4).Value = "Arabic"

 End With

 ' AutoFit columns A:D.

 VB.NET

 370

 raXL = shXL.Range("A1", "D1")

 raXL.EntireColumn.AutoFit()

 ' Make sure Excel is visible and give the user control

 ' of Excel's lifetime.

 appXL.Visible = True

 appXL.UserControl = True

 ' Release object references.

 raXL = Nothing

 shXL = Nothing

 wbXl = Nothing

 appXL.Quit()

 appXL = Nothing

 Exit Sub

Err_Handler:

 MsgBox(Err.Description, vbCritical, "Error: " & Err.Number)

 End Sub

End Class

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, it will show the following window:

Clicking on the Button would display the following excel sheet. You will be asked

to save the workbook.

 VB.NET

 371

 VB.NET

 372

VB.Net allows sending e-mails from your application.

The System.Net.Mail namespace contains classes used for sending e-mails to a

Simple Mail Transfer Protocol (SMTP) server for delivery.

The following table lists some of these commonly used classes:

S.N Class Description

1 Attachment Represents an attachment to an e-mail.

2 AttachmentCollection Stores attachments to be sent as part of an e-

mail message.

3 MailAddress Represents the address of an electronic mail

sender or recipient.

4 MailAddressCollection Stores e-mail addresses that are associated

with an e-mail message.

5 MailMessage Represents an e-mail message that can be sent

using the SmtpClient class.

6 SmtpClient Allows applications to send e-mail by using the

Simple Mail Transfer Protocol (SMTP).

7 SmtpException Represents the exception that is thrown when

the SmtpClient is not able to complete a Send

or SendAsync operation.

The SmtpClient Class

The SmtpClient class allows applications to send e-mail by using the Simple Mail

Transfer Protocol (SMTP).

Following are some commonly used properties of the SmtpClient class:

30. Send Email

 VB.NET

 373

S.N Property Description

1 ClientCertificates Specifies which certificates should be used to

establish the Secure Sockets Layer (SSL)

connection.

2 Credentials Gets or sets the credentials used to

authenticate the sender.

3 EnableSsl Specifies whether the SmtpClient uses Secure

Sockets Layer (SSL) to encrypt the connection.

4 Host Gets or sets the name or IP address of the host

used for SMTP transactions.

5 Port Gets or sets the port used for SMTP

transactions.

6 Timeout Gets or sets a value that specifies the amount

of time after which a synchronous Send call

times out.

7 UseDefaultCredentials Gets or sets a Boolean value that controls

whether the DefaultCredentials are sent with

requests.

Following are some commonly used methods of the SmtpClient class:

S.N Method & Description

1 Dispose

Sends a QUIT message to the SMTP server, gracefully ends the TCP

connection, and releases all resources used by the current instance of the

SmtpClient class.

2 Dispose(Boolean)

Sends a QUIT message to the SMTP server, gracefully ends the TCP

connection, releases all resources used by the current instance of the

SmtpClient class, and optionally disposes of the managed resources.

 VB.NET

 374

3 OnSendCompleted

Raises the SendCompleted event.

4 Send(MailMessage)

Sends the specified message to an SMTP server for delivery.

5 Send(String, String, String, String)

Sends the specified e-mail message to an SMTP server for delivery. The

message sender, recipients, subject, and message body are specified

using String objects.

6 SendAsync(MailMessage, Object)

Sends the specified e-mail message to an SMTP server for delivery. This

method does not block the calling thread and allows the caller to pass an

object to the method that is invoked when the operation completes.

7 SendAsync(String, String, String, String, Object)

Sends an e-mail message to an SMTP server for delivery. The message

sender, recipients, subject, and message body are specified using String

objects. This method does not block the calling thread and allows the

caller to pass an object to the method that is invoked when the operation

completes.

8 SendAsyncCancel

Cancels an asynchronous operation to send an e-mail message.

9 SendMailAsync(MailMessage)

Sends the specified message to an SMTP server for delivery as an

asynchronous operation.

10 SendMailAsync(String, String, String, String)

Sends the specified message to an SMTP server for delivery as an

asynchronous operation. . The message sender, recipients, subject, and

message body are specified using String objects.

11 ToString

Returns a string that represents the current object.

 VB.NET

 375

The following example demonstrates how to send mail using the SmtpClient class.

Following points are to be noted in this respect:

 You must specify the SMTP host server that you use to send e-mail.

The Host and Port properties will be different for different host server. We

will be using gmail server.

 You need to give the Credentials for authentication, if required by the SMTP

server.

 You should also provide the email address of the sender and the e-mail

address or addresses of the recipients using

the MailMessage.From and MailMessage.Toproperties, respectively.

 You should also specify the message content using

the MailMessage.Bodyproperty.

Example

In this example, let us create a simple application that would send an e-mail. Take

the following steps:

 Add three labels, three text boxes and a button control in the form.

 Change the text properties of the labels to - 'From', 'To:' and 'Message:'

respectively.

 Change the name properties of the texts to txtFrom, txtTo and txtMessage

respectively.

 Change the text property of the button control to 'Send'

 Add the following code in the code editor.

Imports System.Net.Mail

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles

MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles

Button1.Click

 Try

 VB.NET

 376

 Dim Smtp_Server As New SmtpClient

 Dim e_mail As New MailMessage()

 Smtp_Server.UseDefaultCredentials = False

 Smtp_Server.Credentials = New
Net.NetworkCredential("username@gmail.com", "password")

 Smtp_Server.Port = 587

 Smtp_Server.EnableSsl = True

 Smtp_Server.Host = "smtp.gmail.com"

 e_mail = New MailMessage()

 e_mail.From = New MailAddress(txtFrom.Text)

 e_mail.To.Add(txtTo.Text)

 e_mail.Subject = "Email Sending"

 e_mail.IsBodyHtml = False

 e_mail.Body = txtMessage.Text

 Smtp_Server.Send(e_mail)

 MsgBox("Mail Sent")

 Catch error_t As Exception

 MsgBox(error_t.ToString)

 End Try

 End Sub

 You must provide your gmail address and real password for credentials.

 When the above code is executed and run using Start button available at

the Microsoft Visual Studio tool bar, it will show the following window, which

you will use to send your e-mails, try it yourself.

 VB.NET

 377

 VB.NET

 378

The Extensible Markup Language (XML) is a markup language much like HTML or

SGML. This is recommended by the World Wide Web Consortium and available as

an open standard.

The System.Xml namespace in the .Net Framework contains classes for

processing XML documents. Following are some of the commonly used classes in

the System.Xml namespace.

S.N Class Description

1 XmlAttribute Represents an attribute. Valid and default

values for the attribute are defined in a

document type definition (DTD) or

schema.

2 XmlCDataSection Represents a CDATA section.

3 XmlCharacterData Provides text manipulation methods that

are used by several classes.

4 XmlComment Represents the content of an XML

comment.

5 XmlConvert Encodes and decodes XML names and

provides methods for converting between

common language runtime types and XML

Schema definition language (XSD) types.

When converting data types, the values

returned are locale independent.

6 XmlDeclaration Represents the XML declaration node

<?xml version='1.0'...?>.

7 XmlDictionary Implements a dictionary used to optimize

Windows Communication Foundation

(WCF)'s XML reader/writer

implementations.

31. XML Processing

 VB.NET

 379

8 XmlDictionaryReader An abstract class that the Windows

Communication Foundation (WCF) derives

from XmlReader to do serialization and

deserialization.

9 XmlDictionaryWriter Represents an abstract class that Windows

Communication Foundation (WCF) derives

from XmlWriter to do serialization and

deserialization.

10 XmlDocument Represents an XML document.

11 XmlDocumentFragment Represents a lightweight object that is

useful for tree insert operations.

12 XmlDocumentType Represents the document type

declaration.

13 XmlElement Represents an element.

14 XmlEntity Represents an entity declaration, such as

<!ENTITY... >.

15 XmlEntityReference Represents an entity reference node.

16 XmlException Returns detailed information about the last

exception.

17 XmlImplementation Defines the context for a set of

XmlDocument objects.

18 XmlLinkedNode Gets the node immediately preceding or

following this node.

19 XmlNode Represents a single node in the XML

document.

20 XmlNodeList Represents an ordered collection of nodes.

 VB.NET

 380

21 XmlNodeReader Represents a reader that provides fast,

non-cached forward only access to XML

data in an XmlNode.

22 XmlNotation Represents a notation declaration, such as

<!NOTATION... >.

23 XmlParserContext Provides all the context information

required by the XmlReader to parse an

XML fragment.

24 XmlProcessingInstruction Represents a processing instruction, which

XML defines to keep processor-specific

information in the text of the document.

25 XmlQualifiedName Represents an XML qualified name.

26 XmlReader Represents a reader that provides fast,

noncached, forward-only access to XML

data.

27 XmlReaderSettings Specifies a set of features to support on

the XmlReader object created by the

Create method.

28 XmlResolver Resolves external XML resources named

by a Uniform Resource Identifier (URI).

29 XmlSecureResolver Helps to secure another implementation of

XmlResolver by wrapping the XmlResolver

object and restricting the resources that

the underlying XmlResolver has access to.

30 XmlSignificantWhitespace Represents white space between markup

in a mixed content node or white space

within an xml:space= 'preserve' scope.

This is also referred to as significant white

space.

31 XmlText Represents the text content of an element

or attribute.

 VB.NET

 381

32 XmlTextReader Represents a reader that provides fast,

non-cached, forward-only access to XML

data.

33 XmlTextWriter Represents a writer that provides a fast,

non-cached, forward-only way of

generating streams or files containing XML

data that conforms to the W3C Extensible

Markup Language (XML) 1.0 and the

Namespaces in XML recommendations.

34 XmlUrlResolver Resolves external XML resources named

by a Uniform Resource Identifier (URI).

35 XmlWhitespace Represents white space in element

content.

36 XmlWriter Represents a writer that provides a fast,

non-cached, forward-only means of

generating streams or files containing XML

data.

37 XmlWriterSettings Specifies a set of features to support on

the XmlWriter object created by the

XmlWriter.Create method.

XML Parser APIs

The two most basic and broadly used APIs to XML data are the SAX and DOM

interfaces.

 Simple API for XML (SAX): Here, you register callbacks for events of

interest and then let the parser proceed through the document. This is

useful when your documents are large or you have memory limitations, it

parses the file as it reads it from disk, and the entire file is never stored in

memory.

 Document Object Model (DOM) API: This is World Wide Web Consortium

recommendation wherein the entire file is read into memory and stored in

a hierarchical (tree-based) form to represent all the features of an XML

document.

 VB.NET

 382

SAX obviously can't process information as fast as DOM can when working with

large files. On the other hand, using DOM exclusively can really kill your resources,

especially if used on a lot of small files.

SAX is read-only, while DOM allows changes to the XML file. Since these two

different APIs literally complement each other there is no reason why you can't

use them both for large projects.

For all our XML code examples, let's use a simple XML file movies.xml as an input:

<?xml version="1.0"?>

<collection shelf="New Arrivals">

<movie title="Enemy Behind">

 <type>War, Thriller</type>

 <format>DVD</format>

 <year>2003</year>

 <rating>PG</rating>

 <stars>10</stars>

 <description>Talk about a US-Japan war</description>

</movie>

<movie title="Transformers">

 <type>Anime, Science Fiction</type>

 <format>DVD</format>

 <year>1989</year>

 <rating>R</rating>

 <stars>8</stars>

 <description>A schientific fiction</description>

</movie>

 <movie title="Trigun">

 <type>Anime, Action</type>

 <format>DVD</format>

 <episodes>4</episodes>

 <rating>PG</rating>

 <stars>10</stars>

 <description>Vash the Stampede!</description>

</movie>

<movie title="Ishtar">

 VB.NET

 383

 <type>Comedy</type>

 <format>VHS</format>

 <rating>PG</rating>

 <stars>2</stars>

 <description>Viewable boredom</description>

</movie>

</collection>

Parsing XML with SAX API

In SAX model, you use the XmlReader and XmlWriter classes to work with the

XML data.

The XmlReader class is used to read XML data in a fast, forward-only and non-

cached manner. It reads an XML document or a stream.

Example 1

This example demonstrates reading XML data from the file movies.xml.

Take the following steps:

 Add the movies.xml file in the bin\Debug folder of your application.

 Import the System.Xml namespace in Form1.vb file.

 Add a label in the form and change its text to 'Movies Galore'.

 Add three list boxes and three buttons to show the title, type and

description of a movie from the xml file.

 Add the following code using the code editor window.

Imports System.Xml

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles

MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 VB.NET

 384

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles

Button1.Click

 ListBox1().Items.Clear()

 Dim xr As XmlReader = XmlReader.Create("movies.xml")

 Do While xr.Read()

 If xr.NodeType = XmlNodeType.Element AndAlso xr.Name = "movie"

Then

 ListBox1.Items.Add(xr.GetAttribute(0))

 End If

 Loop

 End Sub

 Private Sub Button2_Click(sender As Object, e As EventArgs) Handles

Button2.Click

 ListBox2().Items.Clear()

 Dim xr As XmlReader = XmlReader.Create("movies.xml")

 Do While xr.Read()

 If xr.NodeType = XmlNodeType.Element AndAlso xr.Name = "type"

Then

 ListBox2.Items.Add(xr.ReadElementString)

 Else

 xr.Read()

 End If

 Loop

 End Sub

 Private Sub Button3_Click(sender As Object, e As EventArgs) Handles

Button3.Click

 ListBox3().Items.Clear()

 Dim xr As XmlReader = XmlReader.Create("movies.xml")

 Do While xr.Read()

 If xr.NodeType = XmlNodeType.Element AndAlso xr.Name =

"description" Then

 ListBox3.Items.Add(xr.ReadElementString)

 Else

 xr.Read()

 End If

 VB.NET

 385

 Loop

 End Sub

End Class

Execute and run the above code using Start button available at the Microsoft

Visual Studio tool bar. Clicking on the buttons would display, title, type and

description of the movies from the file.

 The XmlWriter class is used to write XML data into a stream, a file, or a

TextWriter object. It also works in a forward-only, non-cached manner.

Example 2

Let us create an XML file by adding some data at runtime. Take the following

steps:

 Add a WebBrowser control and a button control in the form.

 Change the Text property of the button to Show Authors File.

 Add the following code in the code editor.

Imports System.Xml

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles

MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 End Sub

 VB.NET

 386

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles

Button1.Click

 Dim xws As XmlWriterSettings = New XmlWriterSettings()

 xws.Indent = True

 xws.NewLineOnAttributes = True

 Dim xw As XmlWriter = XmlWriter.Create("authors.xml", xws)

 xw.WriteStartDocument()

 xw.WriteStartElement("Authors")

 xw.WriteStartElement("author")

 xw.WriteAttributeString("code", "1")

 xw.WriteElementString("fname", "Zara")

 xw.WriteElementString("lname", "Ali")

 xw.WriteEndElement()

 xw.WriteStartElement("author")

 xw.WriteAttributeString("code", "2")

 xw.WriteElementString("fname", "Priya")

 xw.WriteElementString("lname", "Sharma")

 xw.WriteEndElement()

 xw.WriteStartElement("author")

 xw.WriteAttributeString("code", "3")

 xw.WriteElementString("fname", "Anshuman")

 xw.WriteElementString("lname", "Mohan")

 xw.WriteEndElement()

 xw.WriteStartElement("author")

 xw.WriteAttributeString("code", "4")

 xw.WriteElementString("fname", "Bibhuti")

 xw.WriteElementString("lname", "Banerjee")

 xw.WriteEndElement()

 xw.WriteStartElement("author")

 xw.WriteAttributeString("code", "5")

 xw.WriteElementString("fname", "Riyan")

 xw.WriteElementString("lname", "Sengupta")

 xw.WriteEndElement()

 xw.WriteEndElement()

 VB.NET

 387

 xw.WriteEndDocument()

 xw.Flush()

 xw.Close()

 WebBrowser1.Url = New Uri(AppDomain.CurrentDomain.BaseDirectory +
"authors.xml")

 End Sub

End Class

 Execute and run the above code using Start button available at the

Microsoft Visual Studio tool bar. Clicking on the Show Author File would

display the newly created authors.xml file on the web browser.

Parsing XML with DOM API

According to the Document Object Model (DOM), an XML document consists of

nodes and attributes of the nodes. The XmlDocument class is used to implement

the XML DOM parser of the .Net Framework. It also allows you to modify an

existing XML document by inserting, deleting or updating data in the document.

Following are some of the commonly used methods of the XmlDocument class:

S.N Method Name & Description

 VB.NET

 388

1
AppendChild

Adds the specified node to the end of the list of child nodes, of this node.

2
CreateAttribute(String)

Creates an XmlAttribute with the specified Name.

3
CreateComment

Creates an XmlComment containing the specified data.

4
CreateDefaultAttribute

Creates a default attribute with the specified prefix, local name and

namespace URI.

5
CreateElement(String)

Creates an element with the specified name.

6
CreateNode(String, String, String)

Creates an XmlNode with the specified node type, Name, and

NamespaceURI.

7
CreateNode(XmlNodeType, String, String)

Creates an XmlNode with the specified XmlNodeType, Name, and

NamespaceURI.

8
CreateNode(XmlNodeType, String, String, String)

Creates an XmlNode with the specified XmlNodeType, Prefix, Name, and

NamespaceURI.

9
CreateProcessingInstruction

Creates an XmlProcessingInstruction with the specified name and data.

10
CreateSignificantWhitespace

Creates an XmlSignificantWhitespace node.

11
CreateTextNode

Creates an XmlText with the specified text.

12
CreateWhitespace

Creates an XmlWhitespace node.

 VB.NET

 389

13
CreateXmlDeclaration

Creates an XmlDeclaration node with the specified values.

14
GetElementById

Gets the XmlElement with the specified ID.

15
GetElementsByTagName(String)

Returns an XmlNodeList containing a list of all descendant elements that

match the specified Name.

16
GetElementsByTagName(String, String)

Returns an XmlNodeList containing a list of all descendant elements that

match the specified LocalName and NamespaceURI.

17
InsertAfter

Inserts the specified node immediately after the specified reference node.

18
InsertBefore

Inserts the specified node immediately before the specified reference

node.

19
Load(Stream)

Loads the XML document from the specified stream.

20
Load(String)

Loads the XML document from the specified URL.

21
Load(TextReader)

Loads the XML document from the specified TextReader.

22
Load(XmlReader)

Loads the XML document from the specified XmlReader.

23
LoadXml

Loads the XML document from the specified string.

24
PrependChild

Adds the specified node to the beginning of the list of child nodes for this

node.

 VB.NET

 390

25
ReadNode

Creates an XmlNode object based on the information in the XmlReader.

The reader must be positioned on a node or attribute.

26
RemoveAll

Removes all the child nodes and/or attributes of the current node.

27
RemoveChild

Removes specified child node.

28
ReplaceChild

Replaces the child node oldChild with newChild node.

29
Save(Stream)

Saves the XML document to the specified stream.

30
Save(String)

Saves the XML document to the specified file.

31
Save(TextWriter)

Saves the XML document to the specified TextWriter.

32
Save(XmlWriter)

Saves the XML document to the specified XmlWriter.

Example 3

In this example, let us insert some new nodes in the xml document authors.xml

and then show all the authors' first names in a list box.

Take the following steps:

 Add the authors.xml file in the bin/Debug folder of your application (it

should be there if you have tried the last example)

 Import the System.Xml namespace

 Add a list box and a button control in the form and set the text property of

the button control to Show Authors.

 Add the following code using the code editor.

Imports System.Xml

 VB.NET

 391

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles

MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspoint.com"

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles

Button1.Click

 ListBox1.Items.Clear()

 Dim xd As XmlDocument = New XmlDocument()

 xd.Load("authors.xml")

 Dim newAuthor As XmlElement = xd.CreateElement("author")

 newAuthor.SetAttribute("code", "6")

 Dim fn As XmlElement = xd.CreateElement("fname")

 fn.InnerText = "Bikram"

 newAuthor.AppendChild(fn)

 Dim ln As XmlElement = xd.CreateElement("lname")

 ln.InnerText = "Seth"

 newAuthor.AppendChild(ln)

 xd.DocumentElement.AppendChild(newAuthor)

 Dim tr As XmlTextWriter = New XmlTextWriter("movies.xml", Nothing)

 tr.Formatting = Formatting.Indented

 xd.WriteContentTo(tr)

 tr.Close()

 Dim nl As XmlNodeList = xd.GetElementsByTagName("fname")

 For Each node As XmlNode In nl

 ListBox1.Items.Add(node.InnerText)

 Next node

 End Sub

End Class

 Execute and run the above code using Start button available at the

Microsoft Visual Studio tool bar. Clicking on the Show Author button would

display the first names of all the authors including the one we have added

at runtime.

 VB.NET

 392

 VB.NET

 393

A dynamic web application consists of either or both of the following two types of

programs:

 Server-side scripting - these are programs executed on a web server,

written using server-side scripting languages like ASP (Active Server Pages)

or JSP (Java Server Pages).

 Client-side scripting - these are programs executed on the browser,

written using scripting languages like JavaScript, VBScript, etc.

ASP.Net is the .Net version of ASP, introduced by Microsoft, for creating dynamic

web pages by using server-side scripts. ASP.Net applications are compiled codes

written using the extensible and reusable components or objects present in .Net

framework. These codes can use the entire hierarchy of classes in .Net framework.

The ASP.Net application codes could be written in either of the following

languages:

 Visual Basic .Net

 C#

 Jscript

 J#

In this chapter, we will give a very brief introduction to writing ASP.Net

applications using VB.Net. For detailed discussion, please consult the ASP.Net

Tutorial.

ASP.Net Built-in Objects

ASP.Net has some built-in objects that run on a web server. These objects have

methods, properties and collections that are used in application development.

The following table lists the ASP.Net built-in objects with a brief description:

Object Description

Application

Describes the methods, properties, and collections of the object

that stores information related to the entire Web application,

including variables and objects that exist for the lifetime of the

application.

32. Web Programming

http://localhost/asp.net/index.htm
http://localhost/asp.net/index.htm

 VB.NET

 394

You use this object to store and retrieve information to be

shared among all users of an application. For example, you can

use an Application object to create an e-commerce page.

Request

Describes the methods, properties, and collections of the object

that stores information related to the HTTP request. This

includes forms, cookies, server variables, and certificate data.

You use this object to access the information sent in a request

from a browser to the server. For example, you can use a

Request object to access information entered by a user in an

HTML form.

Response

Describes the methods, properties, and collections of the object

that stores information related to the server's response. This

includes displaying content, manipulating headers, setting

locales, and redirecting requests.

You use this object to send information to the browser. For

example, you use a Response object to send output from your

scripts to a browser.

Server

Describes the methods and properties of the object that

provides methods for various server tasks. With these methods

you can execute code, get error conditions, encode text strings,

create objects for use by the Web page, and map physical paths.

You use this object to access various utility functions on the

server. For example, you may use the Server object to set a

time out for a script.

Session

Describes the methods, properties, and collections of the object

that stores information related to the user's session, including

variables and objects that exist for the lifetime of the session.

You use this object to store and retrieve information about

particular user sessions. For example, you can use Session

object to keep information about the user and his preference

and keep track of pending operations.

 VB.NET

 395

ASP.Net Programming Model

ASP.Net provides two types of programming models:

 Web Forms - this enables you to create the user interface and the

application logic that would be applied to various components of the user

interface.

 WCF Services - this enables you to remote access some server-side

functionalities.

For this chapter, you need to use Visual Studio Web Developer, which is free. The

IDE is almost same as you have already used for creating the Windows

Applications.

Web Forms

Web forms consist of:

 User interface

 Application logic

User interface consists of static HTML or XML elements and ASP.Net server

controls. When you create a web application, HTML or XML elements and server

controls are stored in a file with .aspx extension. This file is also called the page

file.

The application logic consists of code applied to the user interface elements in the

page. You write this code in any of .Net language like, VB.Net, or C#. The following

figure shows a Web Form in Design view:

 VB.NET

 396

Example

Let us create a new web site with a web form, which will show the current date

and time, when a user clicks a button. Take the following steps:

 Select File -> New -> Web Site. The New Web Site Dialog Box appears.

 Select the ASP.Net Empty Web Site templates. Type a name for the web

site and select a location for saving the files.

 You need to add a Default page to the site. Right click the web site name in

the Solution Explorer and select Add New Item option from the context

menu. The Add New Item dialog box is displayed:

 VB.NET

 397

Select Web Form option and provide a name for the default page. We have

kept it as Default.aspx. Click the Add button.

The Default page is shown in Source view

 Set the title for the Default web page by adding a value to the

 To add controls on the web page, go to the design view. Add three labels,

a text box and a button on the form.

 VB.NET

 398

 Double-click the button and add the following code to the Click event of the

button:

Protected Sub Button1_Click(sender As Object, e As EventArgs) _

Handles Button1.Click

 Label2.Visible = True

 Label2.Text = "Welcome to Tutorials Point: " + TextBox1.Text

 Label3.Text = "You visited us at: " + DateTime.Now.ToString()

End Sub

When the above code is executed and run using Start button available at the

Microsoft Visual Studio tool bar, the following page opens in the browser:

 VB.NET

 399

Enter your name and click on the Submit button:

Web Services

A web service is a web application, which is basically a class consisting of methods

that could be used by other applications. It also follows a code-behind architecture

like the ASP.Net web pages, although it does not have a user interface.

The previous versions of .Net Framework used this concept of ASP.Net Web

Service, which had .asmx file extension. However, from .Net Framework 4.0

onwards, the Windows Communication Foundation (WCF) technology has evolved

as the new successor of Web Services, .Net Remoting and some other related

technologies. It has rather clubbed all these technologies together. In the next

section, we will provide a brief introduction to Windows Communication

Foundation (WCF).

If you are using previous versions of .Net Framework, you can still create

traditional web services. Please consult ASP.Net - Web Services tutorial for

detailed description.

Windows Communication Foundation

Windows Communication Foundation or WCF provides an API for creating

distributed service-oriented applications, known as WCF Services.

Like Web services, WCF services also enable communication between applications.

However, unlike web services, the communication here is not limited to HTTP only.

WCF can be configured to be used over HTTP, TCP, IPC, and Message Queues.

Another strong point in favour of WCF is, it provides support for duplex

communication, whereas with web services we could achieve simplex

communication only.

http://localhost/asp.net/asp.net_web_services.htm

 VB.NET

 400

From beginners' point of view, writing a WCF service is not altogether so different

from writing a Web Service. To keep the things simple, we will see how to:

 Create a WCF Service

 Create a Service Contract and define the operations

 Implement the contract

 Test the Service

 Utilize the Service

Example

To understand the concept let us create a simplistic service that will provide stock

price information. The clients can query about the name and price of a stock based

on the stock symbol. To keep this example simple, the values are hardcoded in a

two-dimensional array. This service will have two methods:

 GetPrice Method - it will return the price of a stock, based on the symbol

provided.

 GetName Method - it will return the name of the stock, based on the symbol

provided.

Creating a WCF Service

Take the following steps:

 Open VS Express for Web 2012

 Select New Web Site to open the New Web Site dialog box.

 Select WCF Service template from list of templates:

 Select File System from the Web location drop-down list.

 VB.NET

 401

 Provide a name and location for the WCF Service and click OK.

 A new WCF Service is created.

Creating a Service Contract and Defining the Operations

A service contract defines the operation that a service performs. In the WCF

Service application, you will find two files automatically created in the App_Code

folder in the Solution Explorer

 IService.vb - this will have the service contract; in simpler words, it will

have the interface for the service, with the definitions of methods the

service will provide, which you will implement in your service.

 Service.vb - this will implement the service contract.

 Replace the code of the IService.vb file with the given code:

Public Interface IService

 <OperationContract()>

 Function GetPrice(ByVal symbol As String) As Double

 <OperationContract()>

 Function GetName(ByVal symbol As String) As String

End Interface

Implementing the Contract

In the Service.vb file, you will find a class named Service which will implement

the Service Contract defined in the IService interface.

Replace the code of IService.vb with the following code:

 VB.NET

 402

' NOTE: You can use the "Rename" command on the context menu to change

the class name "Service" in code, svc and config file together.

Public Class Service

 Implements IService

 Public Sub New()

 End Sub

 Dim stocks As String(,) =

 {

 {"RELIND", "Reliance Industries", "1060.15"},

 {"ICICI", "ICICI Bank", "911.55"},

 {"JSW", "JSW Steel", "1201.25"},

 {"WIPRO", "Wipro Limited", "1194.65"},

 {"SATYAM", "Satyam Computers", "91.10"}

 }

 Public Function GetPrice(ByVal symbol As String) As Double _

 Implements IService.GetPrice

 Dim i As Integer

 'it takes the symbol as parameter and returns price

 For i = 0 To i = stocks.GetLength(0) - 1

 If (String.Compare(symbol, stocks(i, 0)) = 0) Then

 Return Convert.ToDouble(stocks(i, 2))

 End If

 Next i

 Return 0

 End Function

 Public Function GetName(ByVal symbol As String) As String _

 Implements IService.GetName

 ' It takes the symbol as parameter and

 ' returns name of the stock

 VB.NET

 403

 Dim i As Integer

 For i = 0 To i = stocks.GetLength(0) - 1

 If (String.Compare(symbol, stocks(i, 0)) = 0) Then

 Return stocks(i, 1)

 End If

 Next i

 Return "Stock Not Found"

 End Function

End Class

Testing the Service

To run the WCF Service, so created, select the Debug->Start Debugging option

from the menu bar. The output would be:

For testing the service operations, double click the name of the operation from the

tree on the left pane. A new tab will appear on the right pane.

Enter the value of parameters in the Request area of the right pane and click the

'Invoke' button.

 VB.NET

 404

The following diagram displays the result of testing the GetPrice operation:

The following diagram displays the result of testing the GetName operation:

 VB.NET

 405

Utilizing the Service

Let us add a default page, an ASP.NET web form in the same solution from which

we will be using the WCF Service we have just created.

Take the following steps:

 Right click on the solution name in the Solution Explorer and add a new web

form to the solution. It will be named Default.aspx.

 Add two labels, a text box and a button on the form.

 We need to add a service reference to the WCF service we just created.

Right click the website in the Solution Explorer and select Add Service

Reference option. This opens the Add Service Reference Dialog box.

 Enter the URL (location) of the Service in the Address text box and click the

Go button. It creates a service reference with the default

name ServiceReference1. Click the OK button.

 VB.NET

 406

Adding the reference does two jobs for your project:

 Creates the Address and Binding for the service in the web.config file.

 Creates a proxy class to access the service.

 Double click the Get Price button in the form, to enter the following code

snippet on its Click event:

Partial Class _Default

 Inherits System.Web.UI.Page

 Protected Sub Button1_Click(sender As Object, e As EventArgs) _

 Handles Button1.Click

 Dim ser As ServiceReference1.ServiceClient = _

 New ServiceReference1.ServiceClient

 Label2.Text = ser.GetPrice(TextBox1.Text).ToString()

 End Sub

End Class

 When the above code is executed and run using Start button available at

the Microsoft Visual Studio tool bar, the following page opens in the

browser:

 VB.NET

 407

 Enter a symbol and click the Get Price button to get the hard-coded price:

